Ir al contenido

Documat


Decaimiento Polinomial y Modelaje Numérico Computacional de la viga de Timoshenko con disipación parcial

  • Acasiete Quispe, Frank Henry [2] ; Pino Romero, Neisser [1]
    1. [1] Universidad Nacional Mayor de San Marcos

      Universidad Nacional Mayor de San Marcos

      Perú

    2. [2] Laboratorio Nacional de Computación Científica, MCTIC, Petrópolis- Brasil
  • Localización: Selecciones Matemáticas, ISSN-e 2411-1783, Vol. 5, Nº. 2 (Agosto - Diciembre), 2018, págs. 164-174
  • Idioma: español
  • DOI: 10.17268/sel.mat.2018.02.04
  • Títulos paralelos:
    • Polynomial Decay and Computational Numerical Modeling of Timoshenko beam with partial dissipation
  • Enlaces
  • Resumen
    • español

      Estudiamos la estabilización uniforme de una clase de sistemas Timoshenko con disipación parcial de la viga. Nuestro resultado principal es demostrar que el semigrupo asociado a este modelo tiene decaimiento polinomial. Demostramos que el semigrupo decae polinomialmente a cero. El sistema decae polinomialmente con una tasa que depende de los coeficientes del problema. Además mostramos el modelamiento computacional del sistema mostrando los resultados obtenidos teóricamente.

    • English

      We studied the uniform stabilization of a class of Timoshenko systems with partial dissipation of the beam. Our main result is to prove that the semigroup associated to this model has polynomial decay. Moreover, we prove that the semigroup decays polynomially to zero. The system decays polynomially with rate dependingon the coeficients of the problem. We also show the computational modeling of the system showing the results obtained theoretically.

  • Referencias bibliográficas
    • Timoshenko, S. On the correction for shear of the differential equation for transverse vibrations of prismatic bars. Philosophical Magazine....
    • Kim, J.U. and Renardy, Y. Boundary control of the Timoshenko beam. SIAM J. Control Optim. 1987; 25:1417-1429.
    • Raposo, C.A., Ferreira, J., Santos, M.L., and Castro, N.N.O. Exponential stability for the Timoshenko system with two weak dampings. Appl....
    • Soufyane, A. andWehbe, A. Uniform stabilization for the Timoshenko beam by a locally distributed damping. Electron J. Diff. Equations. 2003;...
    • Kafini, M. General energy decay in a Timoshenko-type system of thermo-elasticity of type III with a viscoelastic damping. J. Math. Anal. Appl....
    • Messaoudi, S.A., and Said-Houari, B. Energy decay in a Timoshenko-type system of thermo-elasticity of type III. J.Math. Anal. Appl. 2008;...
    • Messaoudi, S.A. and Mustafa, M.I. On the internal and boundary stabilization of Timoshenko beams. NoDEA Nonlinear Differential Equations Appl....
    • Muñoz Rivera, J.E. and Avila, A.I. Rates of decay to non homogeneous timoshenko model with tip body. J. Diff. Equations. 2015; 258:3468-3490.
    • Muñoz Rivera, J.E. Estabilizacao de Semigrupos e Aplicacoes. LNCC-UFRJ. Brasil.2009, 1 edicaoo, 120 p.
    • Acasiete, F. Modelagem Computacional da viga de Timoshenko submetida a cargas pontuais. Dissertacao de Mestrado-LNCC. 2016.
    • Borichev, A. and Tomilov, Y. Optimal polynomial decay of functions and operator semigroups. Math. Ann. 2009; 347:455-478.
    • Strikwerda, J.C. Finite difference schemes and partial differential equations. SIAM. Philadelphia, 2004, 435 p.
    • Strauss, W., and A Vasquez, L. Numerical solution of a nonlinear klein-gordon equation. Journal of Computational Physics. 1978; 28:271-278.
    • Negreanu, M. and Zuazua, E. Uniform boundary controllability of a discrete 1-d wave equation. System and Control Letters. 2003; 48:261-280.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno