Fernando José Albiac Alesanco , José Luis Ansorena Barasoain , Óscar Ciaurri Ramírez , Juan Luis Varona Malumbres
We show that the decreasing rearrangement of the Fourier series with respect to the Jacobi polynomials for functions in Lp does not converge unless p=2. As a by-product of our work on quasi-greedy bases in Lp(μ), we show that no normalized unconditional basis in Lp, p≠2, can be semi-normalized in Lq for q≠p, thus extending a classical theorem of Kadets and Pełczyński from 1962.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados