Ir al contenido

Documat


Modelado Euler-Lagrange del rotor de un aerogenerador tripala como sistema multicuerpo

  • Aguilar-Acevedo, Francisco [1] ; Matus-Vicente, Ana Patricia [1] ; Hernández-López, Miguel Ángel [1] ; Arellano-Pimentel, J. Jesús [1] ; Sánchez-Sánchez, Sergio [1] ; Pacheco-Bautista, Daniel [1]
    1. [1] Universidad del Istmo

      Universidad del Istmo

      Guatemala

  • Localización: Revista UIS Ingenierías, ISSN-e 2145-8456, ISSN 1657-4583, Vol. 19, Nº. 1 (Enero-marzo), 2020, págs. 25-36
  • Idioma: español
  • DOI: 10.18273/revuin.v19n1-2020002
  • Títulos paralelos:
    • Euler-Lagrange modelling for three-bladed rotors in wind turbines as a multibody system
  • Enlaces
  • Resumen
    • español

      Con el propósito de desarrollar estrategias para el mayor aprovechamiento del recurso eólico, es necesario disponer de modelos confiables para simular la respuesta de los aerogeneradores. Si bien, los fabricantes cuentan con modelos detallados, estos son generalmente de “caja negra”, lo que los hace incluso inutilizable en nuevos diseños. Así, los llamados modelos genéricos han proliferado. Bajo este enfoque, en este artículo se presenta el modelado dinámico del rotor de un aerogenerador tripala usando la formulación Euler-Lagrange. Para su análisis el rotor es descrito como un sistema multicuerpo de cuatro grados de libertad empleando matrices de transformación simplificadas. Se exponen los detalles de la obtención del modelo, y la interpretación de su simulación tridimensional (3D) bajo diversas condiciones, que garantiza una fácil comprobación de la fiabilidad del modelo.

    • English

      In order to develop strategies to maximize the utilization of wind power, it is necessary to have reliable models to simulate wind turbines’ responses. Manufacturers have detailed models, though these are “black box”, which makes them unusable even in new designs. Thus, so-called generic models have proliferated. Under this approach, this article presents dynamic modeling for a three-bladed rotor in a wind turbine using Euler-Lagrange formulation. For this analysis, the rotor is described as a multibody system with four degrees of freedom using simplified transformation matrices. The details of how the model was obtained and the interpretation of its three-dimensional (3D) simulation are presented using diverse conditions, which guarantees that the model’s reliability can be easily verified.

  • Referencias bibliográficas
    • [1] A. R. Jha, Wind turbine technology. CRC Press, 2011.
    • [2] Bianchi, D. Battista, and Mantz, Wind turbine control systems: principles, modelling & gain scheduling design (Advances in industrial...
    • [3] P. J. Schubel and R. J. Crossley, “Wind Turbine Blade Design,” in Wind Turbine Technology: Principles and Design, M. Adaramola, Ed. Apple...
    • [4] M. S. Maza, S. Preidikman, And F. G. Flores, “Aeroelasticidad Computacional De Grandes Aerogeneradores: Estado Del Arte, Desafíos Y Áreas...
    • [5] K. C. Wu, “An approach to the development and analysis of wind turbine control algorithms,” Albuquerque, NM, and Livermore, CA (United...
    • [6] M. Saleh, A. Nada, A. El-Betar, and A. El-Assal, “Computational Design Scheme for Wind Turbine Drive-Train Based on Lagrange Multipliers,”...
    • [7] M. K. Al-Solihat and M. Nahon, “Flexible multibody dynamic modeling of a floating wind turbine,” Int. J. Mech. Sci., vol. 142–143, pp....
    • [8] K.-P. Park, J.-H. Cha, and N. Ku, “The flexible multibody dynamics of a floating offshore wind turbine in marine operations,” Ships Offshore...
    • [9] Y. Li, A. M. Castro, T. Sinokrot, W. Prescott, and P. M. Carrica, “Coupled multi-body dynamics and CFD for wind turbine simulation including...
    • [10] X. Jin, L. Li, W. Ju, Z. Zhang, and X. Yang, “Multibody modeling of varying complexity for dynamic analysis of large-scale wind turbines,”...
    • [11] A. P. Matus Vicente, M. Á. Hernández López, F. Aguilar Acevedo, and J. J. Arellano Pimentel, “Simulador Tridimensional De La Cinemática...
    • [12] msc software Corporation, “Adams - The Multibody Dynamics Simulation Solution,” mscsoftware, 2018. [Online]. Available: http://www.mscsoftware.com/product/adams....
    • [13] DTU Wind Energy, “Welcome to HAWC2 (Horizontal Axis Wind turbine simulation Code 2nd generation),” HAWC2, 2018. . [Online]. Available:...
    • [14] M. W. Spong, S. Hutchinson, and M. (Mathukumalli) Vidyasagar, Robot modeling and control. John Wiley & Sons, 2006.
    • [15] A. Barrientos, C. Balaguer, L. F. Peñin, and R. Aracil, Fundamentos De Robotica, 2nd Ed. Madrid Etc.: Mcgraw-Hill, 2007.
    • [16] A. P. Matus Vicente, “Simulador Tridimensional de la Cinemática del Rotor de un Aerogenerador Tripala,” Universidad del Istmo, 2017.
    • [17] The MathWorks Inc., “Troubleshoot Common ODE Problems,” mathworks, 2018. . [Online]. Available: https://www.mathworks.com/help/matlab/math/troubleshoot-common-ode-problems.html....
    • [18] J. Fortmann, Modeling of Wind Turbines with Doubly Fed Generator System. Springer Science+Business Media, 2015. doi: 10.1007/978-3-658-06882-0
    • [19] F. Baumjohann, M. Hermanski, R. Diekmann, and J. Kröning, “3D-multi body simulation of wind turbines with flexible components”, DEWI...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno