Ir al contenido

Documat


Minimization of the first eigenvalue in problems involving the bi-laplacian

  • Anedda, Claudia [1] ; Cuccu, Fabrizio [1] ; Porru, Giovanni [1]
    1. [1] Universitá di Cagliari ,Dipartimento di Matematica e Informatica
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 16, Nº. 1, 2009, págs. 127-136
  • Idioma: inglés
  • DOI: 10.15517/rmta.v16i1.1422
  • Enlaces
  • Resumen
    • español

      Este art´?culo trata de la minimizaci´on del primer autovalor en problemas relativosal bi-Laplaciano bajo condiciones de frontera homog´eneas de tipo Navier o Dirichlet.F´?sicamente, en el problema bi-dimensional, nuestra ecuacin modela la vibraci´on deuna placa inhomog´enea  fija con goznes a lo largo de su borde. Dados varios materiales(de diferentes densidades) y extensi´on total ||, investigamos cu´al debe serla localizaci´on de tales materiales en la placa para minimizar el primer modo de suvibraci´on.Palabras clave: bi-Laplaciano, primer autovalor, minimizaci´on.

    • English

      This paper concerns the minimization of the first eigenvalue in problems involvingthe bi-Laplacian under either homogeneous Navier boundary conditions or homogeneousDirichlet boundary conditions. Physically, in case of N = 2, our equation modelsthe vibration of a non homogeneous plate  which is either hinged or clamped alongthe boundary. Given several materials (with different densities) of total extension ||,we investigate the location of these materials inside  so to minimize the first modein the vibration of the corresponding plate.Keywords: bi-Laplacian, first eigenvalue, minimization.

  • Referencias bibliográficas
    • Agmon, S.; Douglis, A.; Nirenberg, L. (1959) “Estimates near the boundary for solutions of elliptic partial differential equations satisfying...
    • Anedda, C. (2008) “Maximization and minimization in problems involving the bi-Laplacian”, Preprint N. 1, Maths Department, Univ. Cagliari,...
    • Brothers, J.E.; Ziemer, W.P. (1988) “Minimal rearrangements of Sobolev functions”, J. Reine Angew. Math., 384: 153–179.
    • Burton, G.R. (1989) “Variational problems on classes of rearrangements and multiple configurations for steady vortices”, Ann. Inst. Henri...
    • Burton, G.R.; McLeod, J.B. (1991) “Maximisation and minimisation on classes of rearrangements”, Proc. Roy. Soc. Edinburgh Sect. A, 119(3-4):...
    • Chanillo, S.; Grieser, D.; Imai, M.; Kurata, K.; Ohnishi, I. (2000) “Symmetry breaking and other phenomena in the optimization of eigenvalues...
    • Cox, S.J.; McLaughlin, J.R. (1990) “Extremal eigenvalue problems for composite membranes, I, II”, Appl. Math. Optim., 22: 153–167; 169–187.
    • Cuccu, F.; Emamizadeh, B.; Porru, G. (s.f.) “Optimization of the first eigenvalue in problems involving the p-Laplacian”, Proc. Amer. Math....
    • Cuccu, F.; Porru, G. (2003) “Optimization in eigenvalue problems”, Dyn. Contin. Discrete Impuls. Syst. Ser. A Math. Anal., 10: 51–58.
    • Evans, L.; Gariepy, R.F. (1992) Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton.
    • Gilbarg, D.; Trudinger, N.S. (1977) Elliptic Partial Differential Equations of Second Order. Springer Verlag, Berlin.
    • Grunau, H.C.; Sweers, G. (1999) “Sign change for the Green function and for the first eigenfunction of equations of clamped-plate type”, Arch....
    • Kawohl, B. (1985) Rearrangements and Convexity of Level Sets in PDE. Lectures Notes in Mathematics, 1150, Berlin.
    • Struwe, M. (1990) Variational Methods. Springer-Verlag, Berlin, New York.
    • Talenti, G. (1976) “Elliptic equations and rearrangements”, Ann. Sc. Norm. Sup. Pisa, Ser. IV, 3: 697–718.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno