Ir al contenido

Documat


Term Structure of Interest Rates

  • Stradi, Benito A. [1]
    1. [1] Institute of Technology of Costa Rica, Department of Materials Science and Engineering
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 12, Nº. 1-2, 2005, págs. 129-138
  • Idioma: inglés
  • DOI: 10.15517/rmta.v12i1-2.257
  • Enlaces
  • Resumen
    • español

      La tasa de interés de un Banco Estatal para sus bonos comerciales es una cantidad muy importante porque permite el cálculo del interés adicional proveído por un bono comercial. Esa tasa de interés estatal, que no tiene riesgo para el inversionista, ha sido modelada con diferentes niveles de sofistificación. Este artículo compila y compara los principales modelos utilizados en la estimación de esa tasa libre de riesgo y da un ejemplo del comportamiento generado por uno de esos modelos.

    • English

      The risk free rate on bonds is a very important quantity that allows calculation of premium values on bonds. This quantity of stochastic nature has been modeled with different degrees of sophistication. This paper reviews the major models utilized in the estimation of the risk free rate and gives an example of the behavior generated by one of these models.

  • Referencias bibliográficas
    • Bali, T. G. (2000) “Stochastic volatility models of the short-term interest rate”, Journal of Financial and Quantitative Analysis 35(2): 191–215.
    • Benninga, S.; Wiener, Z. (1998) “Term structure of interest rates”, Mathematica in Education and Research 7(2): 1–9.
    • Black, F.; Karasinski, P. (1991) “Bond and option pricing when short rates are lognormal”, Financial Analyst Journal July-August: 52–59.
    • Brennan, M. J.; Schwartz, E. S. (1979) “A continuous time approach to the pricing of bonds”,Journal of Banking and Finance 3: 133–155.
    • Brennan, M. J.; Schwartz, E. S. (1980) “Analyzing convertible bonds”, Journal of Financial and Quantitative Analysis 15(4): 907–929.
    • Chan, K. C.; Karolyi, G. A.; Longstaff, F. A.; Sanders, A. B. (1992) “An empirical comparison of alternative models of the short-term interest...
    • Chapman, D. A.; Pearson, N. D. (2001) “Recent advances in estimating term-structure models”, Financial Analysts Journal July-August: 77–95.
    • Constantinides, G. M.; Ingersoll, J. E. (1984) “Optimal bond trading with personal taxes”, Journal of Financial Economics 13: 299–335.
    • Cox, J. C.; Ingersoll, J. E.; Ross, S. A. (1979) “Duration and the measurement of basis risk”, Journal of Business 59(1): 51–61.
    • Cox, J. C.; Ingersoll, J. E.; Ross, S. A. (1980) “An analysis of variable rate loan contracts”, Journal of Finance 35(2): 389–403.
    • Cox, J. C.; Ingersoll, J. E.; Ross, S. A. (1985) “A theory of the term structure of interest rates”, Econometrica 53(2): 385–406.
    • Cuthbertson, K.; Nitzsche, D. (2001) Investments: Spot and Derivatives Markets. Wiley, Chichester.
    • Dothan, L. U. (1978) “On the term structure of interest rates”, Journal of Financial Economics 6: 59–69.
    • Heath, D.; Jarrow, R.; Morton, A. (1992) “Bond pricing and the term structure of interest rates: a new methodology for contingent claims valuation”,...
    • Jeffrey, A. (1995) “Single factor heath-jarrow-morton term structure models based on markov spot interest rate dynamics”, Journal of Financial...
    • Longstaff, F. A. (1989) “A non-linear general equilibrium model of the term structure of interest rates”, Journal of Financial Economics 23:...
    • Longstaff, F. A.; Schwartz, E. S. (1992) “Interest rate volatility and the term structure: a two-factor general equilibrium model”, Journal...
    • Macaulay, F. (1938) Some Theoretical Problems Suggested by the Movement of Interest Rates, Bond Yields and Stock Prices in the United States...
    • Merton, R. C. (1973) “Theory of rational option pricing”, Bell Journal of Economics and Management Science 4(1): 141–183.
    • Schaefer, S. M.; Schwartz, E. S. (1994) “A two-factor model of the term structure: an approximate analytical solution”, Journal of Financial...
    • Schroder, M. (1989) “Computing the constant elasticity of variance option pricing formula”, Journal of Finance 44(1): 211–219.
    • Sundaresan, M. (1984) “Consumption and equilibrium interest rates in stochastic production economics”, Journal of Finance 39(1): 77–92.
    • Vasicek, O. (1977) “An equilibrium characterization of the term structure”, Journal of Financial Economics 5: 177–188.
    • Wolfram Research (1999) Mathematica 4. New York.
    • Yan, H. (2001) “Dynamic models of the term structure”, Financial Analyst Journal July-August: 60–76.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno