Ir al contenido

Documat


One-Sided Confidence Interval Estimation for Weibull Shape and Scale Parameters

  • Mahdi, Smail [1]
    1. [1] University of the West Indies

      University of the West Indies

      Jamaica

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 12, Nº. 1-2, 2005, págs. 61-72
  • Idioma: inglés
  • DOI: 10.15517/rmta.v12i1-2.251
  • Enlaces
  • Resumen
    • español

      En este artículo, consideramos el problema de estimación de intervalos unilaterales condicionales e incondicionales para los parámetros de escala y de forma en un modelo de Weibull de dos parámetros. La inferencia estadística está basada en los pivotes defendidos por Bain & Engelhardt, el método del cociente de verosimilitud y el estadístico de Birnbaum. Se presentan y discuten resultados de simulación que ilustran el rendimiento de estos métodos de estimación de intervalos. También se presentan resultados de estimación puntual empírica obtenidos con métodos de máxima verosimilitud, momentos generalizados y de momentos ponderados de probabilidad generalizados.

    • English

      In this paper, we consider the problem of one-sided conditional and unconditional interval estimation for the scale and shape parameters in a two-parameter Weibull model. The statistical inference is based upon the pivots advocated in Bain and Engelhardt, the likelihood ratio method and Birnbaum statistic. Simulation results illustrating the performance of these interval estimating methods are discussed and displayed. Empirical point estimate results obtained with the maximum likelihood, generalized moment and generalized probability weighted moment methods are alsopresented.

  • Referencias bibliográficas
    • Bain, L.J.; Engelhardt, M. (1981) “Simple approximate distributional results for confidence and tolerance limits for the Weibull distribution...
    • Bain, L.J.; Engelhardt, M. (1991) Statistical Analysis of Reliability and Life-Testing Models. Deker, New York.
    • Birnbaum, Z.W. (1974) “Computers and unconventional test-statistics”, Reliability and Biometry, Statistical Analysis of Lifelength, SIAM.
    • Casella, G.; Berger, R.L. (2002) Statistical Inference, second Edition. Duxbury.
    • Hosking, J.R.M. (1986) “The theory of probability weighted moments”, Research Report RC12210, IBM Thomas J. Watson Research Center, New York.
    • Mahdi, S.; Ashkar, F. (2004) “Exploring generalized probability weighted moments, generalized moments and maximum likelihood estimating methods...
    • Mahdi, S. (2003) “Two-sample conditional inference in a Weibul model”, Car. Jour. Math. Comp. Sci. 11: 1–12.
    • Mahdi, S. (2000) “Estimation in exponential models”, Matematicki Vesnik 52: 27–45.
    • Mahdi, S. (1999) “Monte Carlo studies on the accuracy of an interval estimator after a preliminary test of significance procedure”, Bulletin...
    • Mahdi, S.; Gupta, V.P. (1993) “Conditionally specified confidence interval for the variance of a normal population”, Bull. Soc. Math. Belg....
    • Meeks, S.L.; D’Agostino, R.B. (1983) “A note on the use of confidence limits following rejection of a null hypothesis”, The American Statistician...
    • Wardell, D.G. (1997) “Small sample interval estimation of Bernoulli and Poisson parameters”, The American Statistician 51(4): 321–325.
    • Wolfram, S. (1991) Mathematica: A System for Doing Mathematics by Computer, (2nd ed.). Addison-Wesley Publishing Company, USA.
    • Zanakis, S.H. (1979) “Extended pattern search with transformation for the three-parameter WEI distribution”, Management Science 25: 1149–1161.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno