Venezuela
Los algoritmos de proyección han evolucionado a partir del algoritmo de proyección alternante propuesto por J. von Neumann en 1933, donde el espacio solución es la intersección de un número finito de subespacios o conjuntos convexos. Investigaciones recientes se han centrado en técnicas para acelerar la convergencia del método y explotar el multiprocesamiento. En este trabajo consideramos el problema de restauración de imágenes. La mayoría de las técnicas desarrolladas para resolverlo han usado algoritmos iterativos; una de ellas consiste en usar proyecciones ortogonales alternantes. Llevamos a cabo una revisión cronológica de las diferentes técnicas en las que se ha aplicado el método de las proyecciones ortogonales alternantes al problema de restauración de imágenes, hasta llegar al enfoque reciente de Combettes (1997-1999), en donde la restauración se basa en el cálculo de proyecciones aproximadas, en lugar de proyecciones exactas.
The projection algorithms have evolved from the alternating projection method proposed by J. von Neumann in 1933, who treated the problem of finding the projection of a given point in a Hilbert space onto the intersection of two closed subspaces. Recent researches have been centered in techniques for accelerate the convergence ofthe method and to exploit the multiprocessing. In this work we considered the image restoration problem. In most techniques developed to solved it have used iterative algorithms; one of them consists of using alternating orthogonal projections. We carried out one chronological looking back of different techniques in which has been applied the method of the alternating orthogonal projections to the problem of imagen restoration, until arriving at the recent approach of Combettes (1997-1999), on where the restoration process is based on the computation of approximate projections (i.e., subgradient projections), instead of exact projections
© 2008-2024 Fundación Dialnet · Todos los derechos reservados