Ir al contenido

Documat


Spatial interpolation of dry deposition using EOF models

  • Muñoz Hernández, Breda [1]
    1. [1] Universidad de Costa Rica

      Universidad de Costa Rica

      Hospital, Costa Rica

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 7, Nº. 1-2, 2000, págs. 153-164
  • Idioma: inglés
  • DOI: 10.15517/rmta.v7i1-2.187
  • Enlaces
  • Resumen
    • Random processes are monitored over space and time by a network of stations distributed across a spatial region. Auxiliary information is often gathered not only at the stations but at other points across the region. The incorporation of auxiliary information in some interpolation techniques has show improvement on the interpolation results. The Empirical Orthogonal Functions (EOF) model is a well-known eigenvector based prediction technique widely used in meteorology and oceanography for modeling the variability of the observed spatio-temporal random process. Similarity matrices are constructed using available auxiliary information and included in the EOF model to develop a spatial interpolation method. The resulting interpolation technique will be applied to real data set and the results compared to ordinary kriging.

  • Referencias bibliográficas
    • Bobrowiz, O.; Choulet, C.; Haurat, A.; Sandoz, F.; Tebaa, M. (1990) A method to build membership functions. Application to numerical/symbolic...
    • Buell, C. E. (1971) “Integral equation representation for Factor Analysis”, Journal of Atmospheric Sciences 28: 1502–1505.
    • Clarke, J. F.; Edgerton, E. S.; Martin, B. E. (1997) “Dry deposition calculations for the clean air status and trends network”, Atmospheric...
    • Cressie, N.A.C. (1991) Statistics for Spatial Data. John Wiley & Sons, New York. Daly, C.; Neilson, R.P.; Phillips, D.L. (1994) “A statistical-topographic...
    • Dubois, D.; Prade, H. (1980) Fuzzy Sets and Systems, Theory and Applications. Mathematics in Science and Engineering, 144, Academic Press,...
    • Duckstein, L.; Blinowska, A.; Verroust, G. (1995) “Fuzzy classification of patient state with application to electrodiagnosis of peripheral...
    • Erickson, R.; Di Lorenzo, P.M.; Woodbury, M.A. (1994) “Classification of the taste responses in brain stem: membership in fuzzy sets”, The...
    • Everitt, B.S. (1993) Cluster Analysis, 3rd Edition. Edward Arnold, London. Fang, J.H. (1997) “Fuzzy logic and geology mathematical modeling...
    • Gower, J.C. (1971) “A general coefficient of similarity and some of its properties”, Biometrics 27: 857–874.
    • Guerra, T.M.; Loslever, P. (1993) “Two ways for getting connections between objective and subjective data sets in man-machine systems: multiple...
    • Hendricks, F.; van Eijnsbergen, A.C.; Stein, A. (1997) “Use of spatial prediction techniques and fuzzy classification mapping soil pollutants”,...
    • Hersh, H.M.; Caramazza, A. (1976) A fuzzy set approach to modifiers and vagueness in natural language”, Journal of Experimental Psychology:...
    • Hewitt, C.N. (1992) Methods of Environmental Data Analysis. Elsevier, Dordrecht.
    • Holland, D.M.; Principe, P.P.; Vorgurger, L. (1999) “Rural ozone: trends and exceedances at CASTnet sites”, Environmental Science and Technology...
    • Juang, C.H.; Huang, X. H.; Holtz, R.D.; Chen, J. W. (1996) “Determining relative density of sands from CPT using fuzzy sets”, Journal of Geotechnical...
    • Legendre L.; Legendre P. (1983) Numerical Ecology, Developments in Environmental Modelling 3. Elsevier, Dordrecht.
    • Legge, H. A.; Krupa, S.V. (1990) Acidic Deposition: Sulphur and Nitrogen Oxides. Lewis Publishers
    • Leung, Y. (1988) “Spatial analysis and planning under imprecision”, Studies in Regional Science and Urban Economics 14: 66–139.
    • Muñoz-Hernández, Breda; Lesser, V.M.; Ramsey, F.L. (1999) “Design based empirical orthogonal functions”, Proceedings of the Section of Statistics...
    • Obled, Ch.; Creutin, J.D. (1986) “Some development in the use of empirical orthogonal functions for mapping meteorological fields”, Journal...
    • Okabe, A.; Boots, B.; Sugihara, K. (1992) Spatial Tessellations. Concepts and Applications of Voronoi Diagrams. John Wiley & Sons., New...
    • Pleim, J.E.; Finkelstein, P.L.; Clarke, J.F.; Ellestad, T.G. (s.f.) “A technique for estimating dry deposition velocities based on similarities...
    • Preisendorfer, R.W. (1988) “Principal component analysis in meteorology and oceanography”, Developments in Atmospheric Science 17: 192–199.
    • Robeson, S.M. (1997) “Spherical methods for spatial interpolation”, Review and Evaluation, Cartography and Geographic Information Systems...
    • Watson, D.F.; Philip, G.M. (1987) “Neighborhood-Based Interpolation”, Geobyte 2(2): 12–16.
    • Wikle, C.K. (1996) Spatio-Temporal Statistical Models with Applications to Atmospheric
    • Processes. Ph.D. dissertation, Iowa State University, Ames, Iowa.
    • Wikle, C.K.; Cressie, N. (1997) “A dimension-reduction approach to space-time Kalman filtering”, Preprint No.97-2, Statistical Laboratory,...
    • Willmott, C. J.; Robeson, S. (1995) “Climatological aided interpolation (CAI) of terrestrial air temperatures”, International Journal of Climatology...
    • Willmott, C. J.; Matsuura, K. (1995) “Sart Interpolation of annually averaged air temperature in the United States”, Journal of Applied Meteorology...
    • Wirsam, B.; Uthus, E. O. (1996) “The use of fuzzy logic in nutrition”, American Institute of Nutrition: 2337S–2341S.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno