Ir al contenido

Documat


Un algoritmo para el entrenamiento de máquinas de vector soporte para regresión

  • Goddard Close, John [1] ; de los Cobos Silva, Sergio Gerardo [1] ; Pérez Salvador, Blanca Rosa [1] ; Gutiérrez Andrade, Miguel Ángel [1]
    1. [1] Universidad Autónoma Metropolitana

      Universidad Autónoma Metropolitana

      México

  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 7, Nº. 1-2, 2000, págs. 107-116
  • Idioma: español
  • DOI: 10.15517/rmta.v7i1-2.183
  • Enlaces
  • Resumen
    • español

      El propósito del presente artículo es doble. Primero se proporciona una introducción a las ideas básicas de la Máquinas de Vector Soporte para regresión. Posteriormente, se presenta un algoritmo novedoso y sencillo, basado en el trabajo de Campbell y Cristianini [16], que resuelve de manera fácil el correspondiente problema de programación cuadrática. Se ilustra el algoritmo con ejemplos, y se compara con el método de regresión clásico.Palabras clave: Máquinas de Vector Soporte, regresión , E-SN

    • English

      The aim of the present paper is twofold. Firstly an introduction to the ideas of Support Vector regression is given. then a new and simple algorithm, suggested by the work of Campbell y Cristianini in [16], is proposed which solves the corresponding quadratic programming problem in an easy fashion. The algorithm is illustrated by example and compared with classical regression.Keywords: Support vector Machines, E-Support Vector regression.

  • Referencias bibliográficas
    • Vapnik, V. (1995) The Nature of Statistical Learning Theory. Springer-Verlag, NewYork.
    • Vapnik, V. (1998) Statistical Learning Theory. John Wiley and Sons, New York.
    • Ganapathiraju, A.; Hamaker, J.; Picone, J. (1998) “Support vector machines for speech recognition”, Proc. ICSLP, Australia.
    • Weston, J.; Gammerman, A.; Stitson, M.; Vapnik, V.; Vovk, V.; Watkins. (1998) “Density estimation using support vector machines”, Technical...
    • Müller, K.; Smola, A.; Rätsch, G.; Schölkopf, B.; Kohlmorgan, J.; Vapnik, V. (1997) “Predicting time series with support vector machines”,...
    • Burges, C. (1998) “A Tutorial on support vector machines for pattern recognition”, Data Mining and Knowledge Discovery, 2(2).
    • Vapnik, V.; Golowich, S.; y Smola, A. (1997) “Support vector method for function approximation, regression estimation, and signal processing”,...
    • Smola, A.; Schölkopf, B. (1998) “A tutorial on support vector regression”, Neuro-COLT2 Technical Report Series, NC2-TR-030.
    • Gunn, S. (1998) “Support vector machines for classification and regression”, ISIS Technical Report, University of Southampton.
    • Stitson, M.; Weston, J.; Gammerman, A.; Vovk V.; Vapnik, V. (1996) “Theory of support vector machines”, Tech. Report CSD-TR-96-17, RHUL.
    • Girosi, F. (1998) “An equivalence between sparse approximation and support vector machines”, Neural Computation, 10(6): 1455–1480.
    • Chin, K. (1998) “Support Vector Machines applied to Speech Pattern Classification”. M.Phil. Thesis in Computer Speech and Language Processing,...
    • Vanderbei, R.J. (1997) “LOQO user’s manual 3.10”, Technical Report SOR-97-08, Statistics and Operations Research, Princeton University.
    • Osuna, E.; Freund, R.; Girosi, F. (1997) “An improved training algorithm for support vector machines”, Neural Networks for Signal Processing...
    • Platt, J. (1998) “Sequential minimal optimization: A fast algorithm for training support vector machines”, Advances in Kernel Methods- Support...
    • Campbell, C.; Cristianini, N. (1999) “Simple learning algorithms for training support vector machines”, Department of Engineering Mathematics,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno