Ir al contenido

Documat


Predicción del Fracaso Escolar Mediante Técnicas de Minería de Datos

  • Autores: C. Márquez Vera, C. Romero, Sebastián Ventura Soto Árbol académico
  • Localización: Revista Iberoamericana de Tecnologías del Aprendizaje: IEEE-RITA, ISSN 1932-8540, Vol. 7, Nº. 3, 2012, págs. 109-117
  • Idioma: español
  • Títulos paralelos:
    • Predicting of School Failure Using Data Mining Techniques.
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This paper proposes to apply data mining techniques to predict school failure and drop out. We use real data on 670 middle-school students from Zacatecas, México and employ white-box classification methods such as induction rules and decision trees. Experiments attempt to improve their accuracy for predicting which students might fail or drop out by: firstly, using all the available attributes; next, selecting the best attributes; and finally, rebalancing data, and using cost sensitive classification. The outcomes have been compared and the best resulting models are shown.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno