Ir al contenido

Documat


Beta autoregressive moving average models

  • Autores: Andréa V. Rocha, Francisco Cribari Neto
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 18, Nº. 3, 2009, págs. 529-545
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We build upon the class of beta regressions introduced by Ferrari and Cribari-Neto (J. Appl. Stat. 31:799–815, 2004) to propose a dynamic model for continuous random variates that assume values in the standard unit interval (0,1). The proposed βARMA model includes both autoregressive and moving average dynamics, and also includes a set of regressors. We discuss parameter estimation, hypothesis testing, goodness-of-fit assessment and forecasting. In particular, we give closed-form expressions for the score function and for Fisher’s information matrix. An application that uses real data is presented and discussed.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno