Ir al contenido

Documat


Balleans, hyperballeans and ideals

  • Dikranjan, Dikran [1] ; Protasov, Igor [2] ; Protasova, Ksenia [2] ; Zava, Nicolò [1]
    1. [1] Udine University
    2. [2] Kyiv University
  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 20, Nº. 2, 2019, págs. 431-447
  • Idioma: inglés
  • DOI: 10.4995/agt.2019.11645
  • Enlaces
  • Resumen
    • A ballean B (or a coarse structure) on a set X is a family of subsets of X called balls (or entourages of the diagonal in X × X) dened in such a way that B can be considered as the asymptotic counterpart of a uniform topological space. The aim of this paper is to study two concrete balleans dened by the ideals in the Boolean algebra of all subsets of X and their hyperballeans, with particular emphasis on their connectedness structure, more specically the number of their connected components.

  • Referencias bibliográficas
    • T. Banakh, I. Protasov, D. Repovs and S. Slobodianiuk, Classifying homogeneous cellular ordinal balleans up to coarse equivalence, arxiv:...
    • T. Banakh and I. Zarichnyi, Characterizing the Cantor bi-cube in asymptotic categories, Groups, Geometry and Dynamics 5 (2011), 691-728. https://doi.org/10.4171/GGD/145
    • W. Comfort and S. Negrepontis, The Theory of Ultrafilters, Grundlehren der mathematischen Wissenschaften, Band 211, Springer--Verlag, Berlin-Heidelberg-New...
    • D. Dikranjan and N. Zava, Some categorical aspects of coarse structures and balleans, Topology Appl. 225 (2017), 164--194. https://doi.org/10.1016/j.topol.2017.04.011
    • D. Dikranjan and N. Zava, Preservation and reflection of size properties of balleans, Topology Appl. 221 (2017), 570--595. https://doi.org/10.1016/j.topol.2017.02.008
    • A. Dow, Closures of discrete sets in compact spaces, Studia Sci. Math. Hungar. 42, no. 2 (2005), 227--234. https://doi.org/10.1556/SScMath.42.2005.2.7
    • K. Kunen, Set theory. An introduction to independence proofs, Studies in Logic and Foundations of Math., vol. 102, North-Holland, Amsterdam-New...
    • O. Petrenko and I. Protasov, Balleans and filters, Mat. Stud. 38, no. 1 (2012), 3--11. https://doi.org/10.1007/s11253-012-0653-x
    • I. Protasov and T. Banakh, Ball Structures and Colorings of Groups and Graphs, Mat. Stud. Monogr. Ser 11, VNTL, Lviv, 2003.
    • I. Protasov and K. Protasova, On hyperballeans of bounded geometry, arXiv:1702.07941v1.
    • I. Protasov and M. Zarichnyi, General Asymptology, 2007 VNTL Publishers, Lviv, Ukraine.
    • J. Roe, Lectures on Coarse Geometry, Univ. Lecture Ser., vol. 31, American Mathematical Society, Providence RI, 2003. https://doi.org/10.1090/ulect/031
    • N. Zava, On F-hyperballeans, work in progress.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno