Ir al contenido

Documat


The function ω ƒ on simple n-ods

  • Vidal-Escobar, Ivon [1] ; Garcia-Ferreira, Salvador [1]
    1. [1] Universidad Nacional Autónoma de México

      Universidad Nacional Autónoma de México

      México

  • Localización: Applied general topology, ISSN-e 1989-4147, ISSN 1576-9402, Vol. 20, Nº. 2, 2019, págs. 325-347
  • Idioma: inglés
  • DOI: 10.4995/agt.2019.11065
  • Enlaces
  • Resumen
    • Given a discrete dynamical system (X, ƒ), we consider the function ωƒ-limit set from X to 2x asωƒ(x) = {y ∈ X : there exists a sequence of positive integers  n1 < n2 < … such that limk→∞ ƒnk (x) = y},for each x ∈ X. In the article [1], A. M. Bruckner and J. Ceder established several conditions which are equivalent to the continuity of the function ωƒ where ƒ: [0,1] → [0,1] is continuous surjection. It is natural to ask whether or not some results of [1] can be extended to finite graphs. In this direction, we study the function ωƒ when the phase space is a n-od simple T. We prove that if ωƒ is a continuous map, then Fix(ƒ2) and Fix(ƒ3) are connected sets. We will provide examples to show that the inverse implication fails when the phase space is a simple triod. However, we will prove that:Theorem A 2. If ƒ: T → T is a continuous function where T is a simple triod then ωƒ is a continuous set valued function iff the family {ƒ0, ƒ1, ƒ2,} is equicontinuous.As a consequence of our results concerning the ωƒ function on the simple triod, we obtain the following characterization of the unit interval.Theorem A 1. Let G be a finite graph. Then G is an arc iff for each continuous function ƒ: G → G the following conditions are equivalent: (1) The function ωƒ is continuous. (2) The set of all fixed points of ƒ2 is nonempty and connected.

  • Referencias bibliográficas
    • A. M. Bruckner and J. Ceder, Chaos in terms of the map x → ω(x,f)$, Pacific J. Math. 156 (1992), 63-96. https://doi.org/10.2140/pjm.1992.156.63
    • R. Gu, Equicontinuity of maps on figure-eight space, Southeast Asian Bull. Math. 25 (2001), 413-419. https://doi.org/10.1007/s100120100004
    • W. Hurewicz and H. Wallman, Dimension theory, Princeton University Press, Princeton (1941). https://doi.org/10.1515/9781400875665
    • A. Illanes and S. B. Nadler, Jr., Hyperspaces: Fundamental and Recent Advances, A Series of Monographs and Textbooks Pure and Applied Mathematics...
    • S. Kolyada and L. Snoha, Some aspects of topological transitivity a survey, Grazer Math. Ber. 334 (1997), 3-35.
    • L. Lum, A Characterization of Local Connectivity in Dendroids, Studies in Topology (Proc. Conf., Univ. North Carolina, Charlotte NC 1974);...
    • J. Mai, The structure of equicontinuous maps, Trans. Amer. Math. Soc. 355 (2003), 4125-4136. https://doi.org/10.1090/S0002-9947-03-03339-7
    • S. B. Nadler, Jr., Continuum Theory: An Introduction, A Series of Monographs and Textbooks Pure and Applied Mathematics 158, Marcel Decker...
    • T. X. Sun, G. W. Su, H. J. Xi and X. Kong, Equicontinuity of maps on a dendrite with finite branch points, Acta Math. Sin. (Engl. Ser.) 33...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno