Ir al contenido

Documat


Assessing the Causal Effect of Binary Interventions from Observational Panel Data with Few Treated Units

  • Pantelis Samartsidis [2] ; Seaman, Shaun R. [2] ; Presanis, Anne M. [2] ; Matthew Hickman [2] ; De Angelis, Daniela [1]
    1. [1] University of Bristol

      University of Bristol

      Reino Unido

    2. [2] Cambridge Institute of Public Health
  • Localización: Statistical science, ISSN 0883-4237, Vol. 34, Nº. 3, 2019, págs. 486-503
  • Idioma: inglés
  • DOI: 10.1214/19-sts713
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Researchers are often challenged with assessing the impact of an intervention on an outcome of interest in situations where the intervention is nonrandomised, the intervention is only applied to one or few units, the intervention is binary, and outcome measurements are available at multiple time points. In this paper, we review existing methods for causal inference in these situations. We detail the assumptions underlying each method, emphasize connections between the different approaches and provide guidelines regarding their practical implementation. Several open problems are identified thus highlighting the need for future research.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno