Ir al contenido

Documat


Lasso Meets Horseshoe: A Survey

  • Anindya Bhadra [1] ; Jyotishka Datta [3] ; Polson, Nicholas G. [2] ; Brandon Willard [2]
    1. [1] Purdue University

      Purdue University

      Township of Wabash, Estados Unidos

    2. [2] University of Chicago

      University of Chicago

      City of Chicago, Estados Unidos

    3. [3] University of Arkansas
  • Localización: Statistical science, ISSN 0883-4237, Vol. 34, Nº. 3, 2019, págs. 405-427
  • Idioma: inglés
  • DOI: 10.1214/19-sts700
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The goal of this paper is to contrast and survey the major advances in two of the most commonly used high-dimensional techniques, namely, the Lasso and horseshoe regularization. Lasso is a gold standard for predictor selection while horseshoe is a state-of-the-art Bayesian estimator for sparse signals. Lasso is fast and scalable and uses convex optimization whilst the horseshoe is nonconvex. Our novel perspective focuses on three aspects: (i) theoretical optimality in high-dimensional inference for the Gaussian sparse model and beyond, (ii) efficiency and scalability of computation and (iii) methodological development and performance.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno