Ir al contenido

Documat


A statistical view of iterative methods for linear inverse problems

  • Autores: Ana K. Fermín, Carenne Ludeña
  • Localización: Test: An Official Journal of the Spanish Society of Statistics and Operations Research, ISSN-e 1863-8260, ISSN 1133-0686, Vol. 17, Nº. 2, 2008, págs. 381-400
  • Idioma: inglés
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this article, we study the problem of recovering the unknown solution of a linear ill-posed problem, via iterative regularization methods, from a statistical point of view. The basic purpose of the paper is to develop adaptive model selection techniques for determining the regularization parameters, i.e., the iteration index. We assume observations are taken over a fixed grid and we consider solutions over a sequence of finite-dimensional subspaces. Based on concentration inequalities techniques, we derive non-asymptotic optimal upper bounds for the mean square error of the proposed estimator.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno