Ir al contenido

Documat


Una implementación computacional del método VEM mixto para el problema de Brinkman en 2d

  • SEQUEIRA, FILANDER A. [1] ; GUILLÉN OVIEDO, HELEN [1]
    1. [1] Universidad Nacional, Escuela de Matemática, Heredia, Costa Rica
  • Localización: Revista de Matemática: Teoría y Aplicaciones, ISSN 2215-3373, ISSN-e 2215-3373, Vol. 26, Nº. 2, 2019 (Ejemplar dedicado a: Revista de Matemática: Teoría y Aplicaciones), págs. 215-251
  • Idioma: español
  • DOI: 10.15517/rmta.v26i2.35968
  • Títulos paralelos:
    • A computational implementation of the mixed-VEM method for the brinkman problem in 2d
  • Enlaces
  • Resumen
    • español

      En este artículo se describen algunos aspectos específicos sobre una implementación computacional para la formulación mixta de elementos virtuales (mixed-VEM, por sus siglas en inglés) del problema lineal de Brinkman en dos dimensiones, con condiciones de frontera de Dirichlet no homogéneas. La formulación empleada fue originalmente propuesta y analizada en CÁCERES, E., GATICA, G.N. AND SEQUEIRA, F.A., A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27 (2017), no. 4, 707–743. La implementación planteada aquí considera cualquier grado polinomial k >= 0 de manera natural al construir diversas matrices locales de bajo tamaño. Además, se propone un algoritmo para el ensamblaje del sistema lineal global asociado, que garantiza la continuidad de la componente normal en la solución discreta.

    • English

      In this paper we describe some specific aspects on the computational implementation of the a mixed virtual element method (mixed-VEM) for the two-dimensional linear Brinkman model with non-homogeneous Dirichlet boundary conditions. The formulation used below was originally proposed and analysed in CÁCERES, E., GATICA, G.N. AND SEQUEIRA, F.A., A mixed virtual element method for the Brinkman problem. Math. Models Methods Appl. Sci. 27 (2017), no. 4, 707–743. The implementation presented here consider any polynomial degree k >= 0 in a natural way by building several local matrices of small size. In addition, an algorithm is proposed for the assembly of the associated global linear system, which guarantees the continuity of the normal component in the discrete solution.

  • Referencias bibliográficas
    • V. Anaya, G. N. Gatica, D. Mora, R. Ruiz-Baier„ An augmented velocityvorticity- pressure formulation for the Brinkman equations, Internat....
    • V. Anaya, D. Mora, C. Reales, R. Ruiz-Baier, Stabilized mixed approximation of axisymmetric Brinkman flow, ESAIM Math. Model. Numer. Anal....
    • V. Anaya, D. Mora, R. Oyarzúa, R. Ruiz-Baier, A priori and a posteriori error analysis of a mixed scheme for the Brinkman problem, Numer....
    • P.F. Antonietti, L. Beirão da Veiga, D. Mora, M. Verani, A stream virtual element formulation of the Stokes problem on polygonal meshes, SIAM...
    • E. Artioli, L. Beirão da Veiga, C. Lovadina, E. Sacco, E.Arbitrary order 2D virtual elements for polygonal meshes: part I, elastic problem,...
    • L. Beirão da Veiga, F. Brezzi, A. Cangiani, L. D. Marini, G. Manzini, A. Russo, Basic principles of virtual elements methods, Math. Models...
    • L. Beirão da Veiga, F. Brezzi, L.D. Marini, Virtual elements for linear elasticity problems, SIAM J. Numer. Anal. 51 (2013), no. 2, 794–812.
    • L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, The hitchhiker’s guide to the virtual element method, Math. Models Methods Appl. Sci....
    • L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, H(div) and H(curl)-conforming virtual element methods, Numer. Math. 133 (2016), no....
    • L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo, Mixed virtual element methods for general second order elliptic problems on poligonal...
    • L. Beirão da Veiga, F. Brezzi, L. D. Marini, A. Russo,Serendipity face and edge VEM spaces, arXiv preprint, arXiv: 1606.01048v1, 2016.
    • L. Beirão da Veiga, C. Lovadina, G. Vacca, Virtual elements for the Navier-Stokes problem on polygonal meshes, SIAM J. Numer. Anal. 56 (2018),...
    • F. Brezzi, A. Cangiani, G. Manzini, A. Russo, Mimetic finite differences and virtual element methods for diffusion problems on polygonal meshes,...
    • F. Brezzi, R.S. Falk, L.D. Marini, Basic principles of mixed virtual element methods, ESAIM Math. Model. Numer. Anal. 48 (2014), no. 4, 1227–1240.
    • F. Brezzi, L.D. Marini, Virtual element methods for plate bending problems, Comput. Methods Appl. Mech. Engrg. 253 (2013), 455–462.
    • E. Cáceres, Mixed virtual element methods. Applications in fluid mechanics, tesis, Ingeniero Civil Matemático, Universidad de Concepción,...
    • E. Cáceres, G.N. Gatica, A mixed virtual element method for the pseudostress-velocity formulation of the Stokes problem, IMA J. Numer. Anal....
    • E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for the Brinkman problem, Math. Models Methods Appl. Sci. 27 (2017),...
    • E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for quasi-Newtonian Stokes flows, SIAM J. Numer. Anal. 56 (2018), no....
    • E. Cáceres, G.N. Gatica, F.A. Sequeira, A mixed virtual element method for a pseudostress-based formulation of linear elasticity, Applied...
    • E.B. Chin, J.B. Lasserre, N. Sukumar, Numerical integration of homogeneous functions on convex and nonconvex polygons and polyhedra, Comput....
    • A.L. Gain, C. Talischi, G.H. Paulino, On the virtual element method for three-dimensional linear elasticity problems on arbitrary polyhedral...
    • G.N. Gatica, L.F. Gatica, A. Márquez, Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media...
    • G.N. Gatica, L.F. Gatica, F.A. Sequeira, Analysis of an augmented pseudostress-based mixed formulation for a nonlinear Brinkman model of porous...
    • G.N. Gatica, M. Munar, F.A. Sequeira, A mixed virtual element method for the Navier-Stokes equations, Math. Models Methods Appl. Sci. 28 (2018),...
    • G.N. Gatica, M. Munar, F.A. Sequeira, A mixed virtual element method for a nonlinear Brinkman model of porous media flow, Calcolo 55 (2018),...
    • J. Guzmán, M. Neilan, A family of nonconforming elements for the Brinkman problem, IMA J. Numer. Anal. 32 (2012), no. 4, 1484–1508.
    • M. Juntunen, R. Stenberg, Analysis of finite element methods for the Brinkman problem, Calcolo 47 (2010), no. 3, 129–147.
    • J. Könnö, R. Stenberg, H(div)-conforming finite elements for the Brinkman problem, Math. Models Methods Appl. Sci. 21 (2011), no.11, 2227–2248.
    • S.E. Mousavi, N. Sukumar, Numerical integration of polynomials and discontinuous functions on irregular convex polygons and polyhedrons, Comput....
    • F.A. Sequeira, P.E. Castillo, Implementación del método LDG para mallas no estructuradas en 3D, Revista de Matemática: Teoría y Aplicaciones...
    • A. Sommariva, M. Vianello, Product Gauss cubature over polygons based on Green’s integration formula, BIT Numerical Mathematics 47 (2007),...
    • P. Vassilevski, U. Villa, A mixed formulation for the Brinkman problem, SIAM J. Numer. Anal 52 (2014), no. 1, 258–281.

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno