Ir al contenido

Documat


The 2-Hessian and sextactic points on plane algebraic curves

  • Paul Aleksander Maugesten [1] ; Torgunn Karoline Moe [1]
    1. [1] University of Oslo

      University of Oslo

      Noruega

  • Localización: Mathematica scandinavica, ISSN 0025-5521, Vol. 125, Nº 1, 2019, págs. 13-38
  • Idioma: inglés
  • DOI: 10.7146/math.scand.a-114715
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In an article from 1865, Arthur Cayley claims that given a plane algebraic curve there exists an associated 2-Hessian curve that intersects it in its sextactic points. In this paper we fix an error in Cayley's calculations and provide the correct defining polynomial for the 2-Hessian. In addition, we present a formula for the number of sextactic points on cuspidal curves and tie this formula to the 2-Hessian. Lastly, we consider the special case of rational curves, where the sextactic points appear as zeros of the Wronski determinant of the 2nd Veronese embedding of the curve


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno