Ir al contenido

Documat


Linear functions and duality on the infinite polytorus

  • Autores: Ole Fredrik Brevig
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 3, 2019, págs. 493-500
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00243-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider the following question: are there exponents 2 < p < q such that the Riesz projection is bounded from L^q to L^p on the infinite polytorus? We are unable to answer the question, but our counter-example improves a result of Marzo and Seip by demonstrating that the Riesz projection is unbounded from L^\infty to L^p if p\ge 3.31138. A similar result can be extracted for any q>2. Our approach is based on duality arguments and a detailed study of linear functions. Some related results are also presented.

  • Referencias bibliográficas
    • Borwein, J.M., Nuyens, D., Straub, A., Wan, J.: Some arithmetic properties of short random walk integrals. Ramanujan J. 26(1), 109–132 (2011)
    • Brevig, O.F., Ortega-Cerdà, J., Seip, K., Zhao, J.: Contractive inequalities for Hardy spaces. Funct. Approx. Comment. Math. 59(1), 41–56...
    • Brevig, O.F., Perfekt, K.-M.: Failure of Nehari’s theorem for multiplicative Hankel forms in Schatten classes. Stud. Math. 228(2), 101–108...
    • Cole, B.J., Gamelin, T.W.: Representing measures and Hardy spaces for the infinite polydisk algebra. Proc. Lond. Math. Soc. (3) 53(1), 112–142...
    • Duren, P.L.: Theory of H^{p} Spaces, Pure and Applied Mathematics, vol. 38. Academic, New York (1970)
    • Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 8th edn. Elsevier, Amsterdam (2015)
    • König, H., Kwapień, S.: Best Khintchine type inequalities for sums of independent, rotationally invariant random vectors. Positivity 5(2),...
    • Marzo, J., Seip, K.: L^\infty to L^p constants for Riesz projections. Bull. Sci. Math. 135(3), 324–331 (2011)
    • Ortega-Cerdà, J., Seip, K.: A lower bound in Nehari’s theorem on the polydisc. J. Anal. Math. 118(1), 339–342 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno