Ir al contenido

Documat


Linear functions and duality on the infinite polytorus

  • Autores: Ole Fredrik Brevig
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 3, 2019, págs. 493-500
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00243-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We consider the following question: are there exponents 2 < p < q such that the Riesz projection is bounded from L^q to L^p on the infinite polytorus? We are unable to answer the question, but our counter-example improves a result of Marzo and Seip by demonstrating that the Riesz projection is unbounded from L^\infty to L^p if p\ge 3.31138. A similar result can be extracted for any q>2. Our approach is based on duality arguments and a detailed study of linear functions. Some related results are also presented.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno