Ir al contenido

Documat


Tangent cones of monomial curves obtained by numerical duplication

  • Autores: Marco D'Anna Árbol académico, Raheleh Jafari, Francesco Strazzanti
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 3, 2019, págs. 461-477
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00241-w
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Given a numerical semigroup ring R = k[S], an ideal E of S and an odd element b \in S, the numerical duplication S \bowtie ^b E is a numerical semigroup, whose associated ring k \llbracket S \triangledown^{b} E \rrbracket shares many properties with the Nagata’s idealization and the amalgamated duplication of R along the monomial ideal I=(t^e \mid e\in E). In this paper we study the associated graded ring of the numerical duplication characterizing when it is Cohen–Macaulay, Gorenstein or complete intersection. We also study when it is a homogeneous numerical semigroup, a property that is related to the fact that a ring has the same Betti numbers of its associated graded ring. On the way we also characterize when \mathrm{gr}_{\mathfrak {m}}(I) is Cohen–Macaulay and when \mathrm{gr}_{\mathfrak {m}}(\omega _R) is a canonical module of \mathrm{gr}_{\mathfrak {m}}(R) in terms of numerical semigroup’s properties, where \omega _R is a canonical module of R.

  • Referencias bibliográficas
    • Anderson, D.D., Winders, M.: Idealization of a module. J. Commut. Algebra 1(1), 3–56 (2009)
    • Barucci, V., D’Anna, M., Strazzanti, F.: A family of quotients of the Rees algebra. Commun. Algebra 43(1), 130–142 (2015)
    • Barucci, V., D’Anna, M., Strazzanti, F.: Families of Gorenstein and almost Gorenstein rings. Ark. Mat. 54(2), 321–338 (2016)
    • Barucci, V., Dobbs, D.E., Fontana, M.: Maximality Properties in Numerical Semigroups and Applications to One-Dimensional Analytically Irreducible...
    • Barucci, V., Fröberg, R.: Associated graded rings of one dimensional analytically irreducible rings. J. Algebra 304(1), 349–358 (2006)
    • Bryant, L.: Goto numbers of a numerical semigroup ring and the Gorensteiness of associated graded rings. Commun. Algebra 38(6), 2092–2128...
    • D’Anna, M.: A construction of Gorenstein rings. J. Algebra 306(2), 507–519 (2006)
    • D’Anna, M., Fontana, M.: An amalgamated duplication of a ring along an ideal: basic properties. J. Algebra Appl. 6(3), 443–459 (2007)
    • D’Anna, M., Micale, V., Sammartano, A.: When the associated graded ring of a semigroup ring is complete intersection. J. Pure Appl. Algebra...
    • D’Anna, M., Strazzanti, F.: The numerical duplication of a numerical semigroup. Semigroup Forum 87(1), 149–160 (2013)
    • Delgado, M., García-Sánchez, P.A., Morais, J.: “NumericalSgps”—a GAP package, Version 1.1.5 (2017) http://www.gap-system.org/Packages/numericalsgps.html....
    • Fossum, R.M., Griffith, P.A., Reiten, I.: Trivial Extensions of Abelian Categories Homological Algebra of Trivial Extensions of Abelian Categories...
    • The GAP Group: GAP—Groups, Algorithms, and Programming, Version 4.8.4 (2016). http://www.gap-system.org. Accessed 4 June 2016
    • García, A.: Cohen–Macaulayness of the associated graded of a semigroup ring. Commun. Algebra 10, 393–415 (1982)
    • Jäger, J.: Längenberechnung und kanonische ideale in eindimensionalen ringen. Arch. Math. 29, 504–512 (1997)
    • Grayson, D.R., Stillman, M.E.: Macaulay2, a software system for research in algebraic geometry. http://www.math.uiuc.edu/Macaulay2/. Accessed...
    • Herzog, J., Rossi, M.E., Valla, G.: On the depth of the symmetric algebra. Trans. Am. Math. Soc. 296(2), 577–606 (1986)
    • Huang, I.-C.: Residual complex on the tangent cone of a numerical semigroup ring. Acta Math. Vietnam. 40(1), 149–160 (2015)
    • Jafari, R., Armengou, S.Zarzuela: Homogeneous numerical semigroups. Semigroup Forum 97(2), 278–306 (2018)
    • Lipman, J.: Stable ideals and ARF rings. Am. J. Math. 93, 649–685 (1971) Oneto, A., Strazzanti, F., Tamone, G.: One-dimensional Gorenstein...
    • Ooishi, A.: On the associated graded modules of canonical modules. J. Algebra 141, 143–157 (1991)
    • Rosales, J.C., García-Sánchez, P.A.: Numerical Semigroups. Springer Developements in Mathematics, vol. 20. Springer, Berlin (2009)
    • Şahin, M.: Extensions of toric varieties. Electron. J. Comb. 18(1), 1 (2011)
    • Stamate, D.I.: Betti numbers for numerical semigroup rings. In: Ene, V., Miller, E. (eds.) Multigraded Algebra and Applications. NSA 2016....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno