Ir al contenido

Documat


Rough maximal bilinear singular integrals

  • Autores: Eva Buriánková, Petr Honzík
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 3, 2019, págs. 431-446
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00239-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the rough maximal bilinear singular integral \begin{aligned} T^{*}_\varOmega (f,g)(x)=\! \sup _{\varepsilon >0}\left| \int _{\mathbb {R}^{n}\setminus B\left( 0,\varepsilon \right) }\! \int _{\mathbb {R}^{n}\setminus B\left( 0,\varepsilon \right) }\!\frac{ \varOmega ((y,z)/|(y,z)|)}{ |(y,z)|^{2n}}f(x-y)g(x-z) dydz\right| , \end{aligned} where \varOmega is a function in L^\infty (\mathbb S^{2n-1}) with vanishing integral. We prove it is bounded from L^p\times L^q\rightarrow L^r, where 1 p,q \infty and 1/r=1/p+1/q. We also discuss results for \varOmega \in L^s(\mathbb S^{2n-1}), 1 s \infty .

  • Referencias bibliográficas
    • Calderón, A.P., Zygmund, A.: On the existence of certain singular integrals. Acta Math. 88, 85–139 (1952)
    • Calderón, A.P., Zygmund, A.: On singular integrals. Am. J. Math. 78, 289–309 (1956)
    • Coifman, R.R., Meyer, Y.: On commutators of singular integrals and bilinear singular integrals. Trans. Am. Math. Soc. 212, 315–331 (1975)
    • Daubechies, I.: Orthonormal bases of compactly supported wavelets. Commun. Pure Appl. Math. 41, 909–996 (1988)
    • Duoandikoetxea, J.: Fourier Analysis, Graduate Studies in Mathematics, vol. 29. American Mathematical Society, Providence (2001)
    • Grafakos, L.: Modern Fourier Analysis, Graduate Texts in Mathematics, vol. 250, 3rd edn. Springer, New York (2014)
    • Grafakos, L., Honzik, P., He, D.: Rough bilinear singular integrals. Adv. Math. 326, 54–78 (2018)
    • Grafakos, L., Torres, R.: Maximal operator and weighted norm inequalities for multilinear singular integrals. Indiana Univ. Math. J. 51, 1261–1276...
    • Grafakos, L., Torres, R.H.: Multilinear Calderón–Zygmund theory. Adv. Math. 165, 124–164 (2002)
    • Meyer, Y.: Wavelets and Operators, Cambridge Studies in Advanced Mathematics, vol. 37. Cambridge University Press, Cambridge (1992)
    • Triebel, H.: Bases in Function Spaces, Sampling, Discrepancy, Numerical Integration, EMS Tracts in Mathematics, vol. 11. European Mathematical...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno