Ir al contenido

Documat


On stability properties of powers of polymatroidal ideals

  • Autores: Shokoufe Karimi, Amir Mafi
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 3, 2019, págs. 357-365
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0234-x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let R=K[x_1,\ldots ,x_n] be the polynomial ring in n variables over a field K with the maximal ideal \mathfrak {m}=(x_1,\ldots ,x_n). Let {\text {astab}}(I) and {\text {dstab}}(I) be the smallest integer n for which {\text {Ass}}(I^n) and {\text {depth}}(I^n) stabilize, respectively. In this paper we show that {\text {astab}}(I)={\text {dstab}}(I) in the following cases:

      (i) I is a matroidal ideal and n\le 5.

      (ii) I is a polymatroidal ideal, n=4 and \mathfrak {m}\notin {\text {Ass}}^{\infty }(I), where {\text {Ass}}^{\infty }(I) is the stable set of associated prime ideals of I.

      (iii) I is a polymatroidal ideal of degree 2.

      Moreover, we give an example of a polymatroidal ideal for which {\text {astab}}(I)\ne {\text {dstab}}(I). This is a counterexample to the conjecture of Herzog and Qureshi, according to which these two numbers are the same for polymatroidal ideals.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno