Ir al contenido

Documat


On stability properties of powers of polymatroidal ideals

  • Autores: Shokoufe Karimi, Amir Mafi
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 3, 2019, págs. 357-365
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0234-x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let ?=?[?1,…,??] be the polynomial ring in n variables over a field K with the maximal ideal ?=(?1,…,??) . Let astab(?) and dstab(?) be the smallest integer n for which Ass(??) and depth(??) stabilize, respectively. In this paper we show that astab(?)=dstab(?) in the following cases:

      (i) I is a matroidal ideal and ?≤5 .

      (ii) I is a polymatroidal ideal, ?=4 and ?∉Ass∞(?) , where Ass∞(?) is the stable set of associated prime ideals of I.

      (iii) I is a polymatroidal ideal of degree 2.

      Moreover, we give an example of a polymatroidal ideal for which astab(?)≠dstab(?) . This is a counterexample to the conjecture of Herzog and Qureshi, according to which these two numbers are the same for polymatroidal ideals.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno