Ir al contenido

Documat


Tail entropy and hyperbolicity of measures

  • Autores: Gang Liao
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 2, 2019, págs. 347-356
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0233-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the relationship between the tail entropy and the hyperbolicity of invariant measures. An upper bound of the tail entropy is given in terms of the hyperbolic index.

  • Referencias bibliográficas
    • Barreira, L., Pesin, Y.: Nonuniform Hyperbolicity: Dynamics of Systems with Nonzero Lyapunov Exponents. Cambridge Press, Cambridge (2007)
    • Bowen, R.: Entropy expansive maps. Trans. Am. Math. Soc. 164, 323–331 (1972)
    • Burguet, D.: A direct proof of the tail variational principle and its extension to maps. Ergod. Theory Dyn. Syst. 29, 357–369 (2009)
    • Burguet, D., Liao, G., Yang, J.: Asymptotic $h$-expansiveness rate of $C^{\infty }$ maps. Proc. Lond. Math. Soc. 111, 381–419 (2015)
    • Buzzi, J.: Intrinsic ergodicity for smooth interval maps. Isr. J. Math. 100, 125–161 (1997)
    • Downarowicz, T.: Entropy structure. J. Anal. Math. 96, 57–116 (2005)
    • Hirsch, M., Pugh, C., Shub, M.: Invariant Manifolds Volume 583 of Lect. Notes in Math. Springer, Berlin (1977)
    • Liao, G., Viana, M., Yang, J.: The entropy conjecture for diffeomorphisms away from tangencies. J. Eur. Math. Soc. 6, 2043–2060 (2013)
    • Newhouse, S.: Continuity properties of entropy. Ann. Math. 129, 215–235 (1989)
    • Oseledets, V.I.: A multiplicative ergodic theorem. Trans. Mosc. Math. Soc. 19, 197–231 (1968)
    • Pesin, Y.: Families of invariant manifolds corresponding to nonzero characteristic exponents. Math. USSR-Izv. 40, 1261–1305 (1976)
    • Pollicott, M.: Lectures on Ergodic Theory and Pesin Theory on Compact Manifolds. Cambridge Univ. Press, Cambridge (1993)
    • Yomdin, Y.: Volume growth and entropy. Isr. J. Math. 57, 285–300 (1987)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno