Ir al contenido

Documat


Composition and translation operators on certain subspaces of the space of entire functions of bounded type

  • Autores: Manjul Gupta, Deepika Baweja
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 2, 2019, págs. 323-346
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0229-7
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper, for complex Banach spaces E, F and 1\le p\le \infty, the subspaces {\mathcal {H}}_{p}^{\gamma }(E,F) of the space {\mathcal {H}}_{b}(E,F) consisting of holomorphic mappings of bounded type from E into F, have been introduced and studied. Here the notation \gamma stands for a comparison function \gamma which is an entire function defined on the complex plane, as \gamma (z)=\sum \nolimits _{n=0}^{\infty } \gamma _{n} z^{n}, \gamma _{n} > 0 for each n \in {\mathbb {N}}_{0} with \gamma _{n}^{\frac{1}{n}}\rightarrow 0 and \frac{\gamma _{n+1}}{\gamma _{n}} \downarrow 0 as n increases to \infty. Besides considering the relationships amongst these spaces, their vector valued sequential analogues have also been obtained for 1\le p < \infty. These results are used in obtaining the dual and Schauder decomposition of {\mathcal {H}}_{p}^{\gamma }(E,F), 1\le p < \infty. The continuity of differentiation and translation operator has been proved by restricting \gamma suitably and the spectrum of the differentiation operator D_a has been investigated. Finally, the continuity and compactness of the composition operator C_{\phi }, defined corresponding to a holomorphic function \phi have been investigated.

      <

  • Referencias bibliográficas
    • Barroso, J.A.: Introduction to Holomorphy. North-Holland, New York (1985)
    • Beltrán, M.J.: Operators on weighted spaces of holomorphic functions. Thesis, Universitat Politècnica de València, València (2014)
    • Chacón, G.A., Chacón, G.R., Giménez, J.: Composition operators on spaces of entire functions. Proc. Am. Math. Soc. 135(7), 2205–2218 (2007)
    • Carando, D., Sevilla-Peris, P.: Spectra of weighted algebra of holomorphic function. Math. Z. 263, 887–902 (2009)
    • Carando, D.: A characterization of composition operators on algebras of analytic functions. Proc. Edinb. Math. Soc. 51, 305–313 (2008)
    • Carswell, B.J., MacCluer, B.D., Schuster, A.: Composition operators on the Fock space. Acta Sci. Math. (Szeged) 69(34), 871–887 (2003)
    • Chae, S.B.: Holomorphy and Calculas in Normed Spaces, Monographs and Textbooks in Pure and Applied Mathematics, vol. 92. M. Dekker, New York...
    • Chan, K.C., Shapiro, J.H.: The cyclic behaviour of translation operators on Hilbert spaces of entire functions. Indiana Univ. Math. J. 40,...
    • Dineen, S.: Complex Analysis in Locally Convex Spaces. North-Holland, New York (1981)
    • Dineen, S.: Complex Analysis on Infinite Dimensional Spaces. Springer, London (1999)
    • Doan, M.L.: Hilbert spaces of entire functions and composition operators. Complex Anal. Oper. Theory 10(1), 213–230 (2016)
    • Doan, M.L., Khoi, L.H.: Composition operators on Hilbert spaces of entire functions. C. R. Math. Acad. Sci. Paris Ser. I 353(6), 495–499 (2015)
    • Duyos-Ruiz, S.M.: On the existence of universal functions. Sov. Math. Dokl. 27, 9–13 (1983)
    • Galindo, P., Lindström, M., Ryan, R.: Weakly compact composition operators between algebras of bounded analytic functions. Proc. Am. Math....
    • García, D., Maestre, M., Sevilla-Peris, P.: Composition operators between weighted spaces of holomophic functions on Banach spaces. Ann. Acad....
    • Gupta, M., Pradhan, S.: On Orlicz spaces of entire functions. Indian J. Pure Appl. Math. 39, 123–135 (2008)
    • Gupta, M., Pradhan, S.: Differential operators on the Orlicz spaces of entire functions. Ganita 61, 7–18 (2010)
    • Gupta, M., Baweja, D.: Weighted spaces of holomorphic functions on Banach spaces and the approximation property. Extr. Math. 31(2), 123–144...
    • Holub, J.R.: Reflexivity of {\cal{L}}(E, F). Proc. Am. Math. Soc. 39, 175–177 (1973)
    • Kamthan, P.K., Gupta, M.: Sequence Spaces and Series. Lecture Notes No. 65, Marcel Dekker Inc., New York (1981)
    • Le, T.: Composition operators between Segal–Bargmann spaces. J. Oper. Theory 78(1), 135–158 (2017)
    • Matos, M.C.: On the Fourier-Borel transformation and spaces of entire functions in a normed space. In: Zapata, G.I. (ed.) Functional Analysis,...
    • Matos, M.C.: On convolution operators in spaces of entire functions of given type and order. In: Mujica, J. (ed.) Complex Analysis, Functional...
    • Mujica, J.: Complex Analysis in Banach Spaces. North-Holland, New York (1986)
    • Pietsch, A.: Nuclear Locally Convex Spaces. Springer, London (1972)
    • Pradhan, S.: Orlicz Spaces of Entire Functions and Modular Sequence Spaces. Ph.D. Thesis, IIT Kanpur, Kanpur, India (2008)
    • Ruckle, W.: Reflexivity of {\cal{L}}(E, F). Proc. Am. Math. Soc. 34, 171–174 (1972)
    • Rudin, W.: Functional Analysis. McGraw-Hill, New York (1973)
    • Stochel, J., Stochel, J.B.: Composition operators on Hilbert spaces of entire functions with analytic symbols. J. Math. Anal. Appl. 454(2),...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno