Ir al contenido

Documat


Extension of Pettis integration: Pettis operators and their integrals

  • Autores: Óscar Blasco de la Cruz Árbol académico, Lech Drewnowski
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 2, 2019, págs. 267-281
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0225-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this note, the authors discuss the concepts of a Pettis operator, by which they mean a weak ^*–weakly continuous linear operator F from a dual Banach space to an L_1-space, and of its Pettis integral, understood simply as the dual operator F^* of F. Applications to radial limits in weak Hardy spaces of vector-valued harmonic and holomorphic functions are provided.

  • Referencias bibliográficas
    • Blasco, O.: Boundary values of vector-valued harmonic functions considered as operators. Studia Math. 86, 19–33 (1987)
    • Blasco, O.: Convolution of operators and applications. Math. Z. 199, 109–114 (1988)
    • Blasco, O.: Hardy spaces of vector-valued functions: duality. Trans. Am. Math. Soc. 308, 495–507 (1988)
    • Blasco, O.: Boundary values of functions in vector-valued Hardy spaces and geometry of Banach spaces. J. Funct. Anal. 78, 346–364 (1988)
    • Bukhvalov, A.V., Danilevich, A.A.: Boundary properties of analytic and harmonic functions with values in Banach spaces. Mat. Zametki 31, 203–214...
    • Collins, H.S., Ruess, W.: Weak compactness in spaces of compact operators and of vector valued functions. Pac. J. Math. 106, 45–71 (1983)
    • Diestel, J., Uhl, J.J.: Vector Measures, Mathematical Surveys, vol. 15. Am. Math. Soc, Providence (1977)
    • Dowling, P.N., Edgar, G.A.: Some characterizations of the analytic Radon–Nikodqm property in Banach spaces. J. Funct. Anal. 80, 349–357 (1988)
    • Drewnowski, L.: On the Dunford and Pettis integrals. In: Proceedings of Conference “Probability and Banach Spaces”, June 17–21, 1985, Zaragoza...
    • Drewnowski, L., Lipecki, Z.: On vector measures which have everywhere infinite variation or noncompact range. Diss. Math. 339, 3–39 (1995)
    • Duren, P.L.: Theory of Spaces. Academic Press, New York (1970)
    • Freniche, F., García-Vázquez, J.C., Rodrguez-Piazza, L.: The failure of Fatou’s theorem on Poisson integrals of Pettis integrable functions....
    • Graves, W.H., Ruess, W.: Compactness and weak compactness in spaces of compact range vector measures. Can. J. Math. 36, 1000–1020 (1984)
    • Garnett, J.B.: Bounded Analytic Functions. Academic Press, New York (1981)
    • Laititila, J., Tylli, H.-O., Wang, M.: Composition operators from weak to strong spaces of vector-valued analytic functions. J. Oper. Theory...
    • Michalak, A.: On the Fubini theorem for the Pettis integral of bounded functions. Bull. Pol. Acad. Sci. Math. 49, 1–14 (2001)
    • Musiał, K.: The weak Radon–Nikodým property in Banach spaces. Studia Math. 64, 151–174 (1979)
    • Musiał, K.: Topics in the theory of Pettis integration. Rend. Istit. Mat. Univ. Trieste 23, 177–262 (1991)
    • Musiał, K.: Pettis integral. In: Pap, E. (ed.) Handbook of Measure Theory, Chap. 12, pp 531–586. North Holland (2002)
    • Rybakov, V.I.: Conditional mathematical expectation for functions that are integrable in the sense of Pettis. Mat. Zametki 10, 58–64 (1971)....
    • Talagrand, M.: Pettis integral and measure theory. Mem. Am. Math. Soc. 307, 224 (1984)
    • Thomas, E.: The Lebesgue–Nikodým theorem for vector valued radon measures. Mem. Am. Math. Soc. 139, 101 (1974)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno