Ir al contenido

Documat


Atomic and maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators on spaces of homogeneous type

  • Autores: Sibei Yang, Dachun Yang
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 2, 2019, págs. 197-246
  • Idioma: inglés
  • DOI: 10.1007/s13348-019-00237-6
  • Enlaces
  • Resumen
    • Let {\mathcal {X}} be a metric space with doubling measure and L be a non-negative self-adjoint operator on L^2({\mathcal {X}}) whose heat kernels satisfy the Gaussian upper bound estimates. Assume that the growth function \varphi :\ {\mathcal {X}}\times [0,\infty ) \rightarrow [0,\infty ) satisfies that \varphi (x,\cdot ) is an Orlicz function and \varphi (\cdot ,t)\in {{\mathbb {A}}}_{\infty }({\mathcal {X}}) (the class of uniformly Muckenhoupt weights). Let H_{\varphi ,\,L}({\mathcal {X}}) be the Musielak–Orlicz–Hardy space defined via the Lusin area function associated with the heat semigroup of L. In this article, the authors characterize the space H_{\varphi ,\,L}({\mathcal {X}}) by means of atoms, non-tangential and radial maximal functions associated with L. In particular, when \mu ({\mathcal {X}})<\infty, the local non-tangential and radial maximal function characterizations of H_{\varphi ,\,L}({\mathcal {X}}) are obtained. As applications, the authors obtain various maximal function and the atomic characterizations of the “geometric” Musielak–Orlicz–Hardy spaces H_{\varphi ,\,r}(\Omega ) and H_{\varphi ,\,z}(\Omega ) on the strongly Lipschitz domain \Omega in {\mathbb {R}}^n associated with second-order self-adjoint elliptic operators with the Dirichlet and the Neumann boundary conditions; even when \varphi (x,t):=t for any x\in {\mathbb {R}}^n and t\in [0,\infty ), the equivalent characterizations of H_{\varphi ,\,z}(\Omega ) given in this article improve the known results via removing the assumption that \Omega is unbounded.

  • Referencias bibliográficas
    • Almeida, V., Betancor, J.J., Dalmasso, E., Rodríguez-Mesa, L.: Local Hardy spaces with variable exponents associated to non-negative self-adjoint...
    • Anh, B.T., Li, J.: Orlicz–Hardy spaces associated to operators satisfying bounded H_{\infty } functional calculus and Davies–Gaffney estimates....
    • Auscher, P., Duong, X.T., McIntosh, A.: Boundedness of Banach space valued singular integral operators and Hardy spaces. Unpublished Manuscript...
    • Auscher, P., Russ, E.: Hardy spaces and divergence operators on strongly Lipschitz domains of R^n. J. Funct. Anal. 201, 148–184 (2003)
    • Auscher, P., Tchamitchian, Ph.: Gaussian estimates for second order elliptic divergence operators on Lipschitz and C^1 domains. In: Lumer,...
    • Avci, M., Pankov, A.: Multivalued elliptic operators with nonstandard growth. Adv. Nonlinear Anal. 7, 35–48 (2018)
    • Baroni, P., Colombo, M., Mingione, G.: Regularity for general functionals with double phase. Calc. Var. Partial Differ. Equ. 57(2), 62 (2018)
    • Bonami, A., Feuto, J., Grellier, S.: Endpoint for the DIV-CURL lemma in Hardy spaces. Publ. Mat. 54, 341–358 (2010)
    • Bonami, A., Grellier, S., Ky, L.D.: Paraproducts and products of functions in BMO({\mathbb{R}}^{n}) and H^1({\mathbb{R}}^{n}) through wavelets....
    • Bonami, A., Iwaniec, T., Jones, P., Zinsmeister, M.: On the product of functions in BMO and H^1. Ann. Inst. Fourier (Grenoble) 57, 1405–1439...
    • Bui, T.A., Cao, J., Ky, L.D., Yang, D., Yang, S.: Weighted Hardy spaces associated with operators satisfying reinforced off-diagonal estimates....
    • Bui, T.A., Cao, J., Ky, L.D., Yang, D., Yang, S.: Musielak–Orlicz–Hardy spaces associated with operators satisfying reinforced off-diagonal...
    • Bui, T.A., Duong, X.T.: Regularity estimates for Green operators of Dirichlet and Neumann problems on weighted Hardy spaces. arXiv:1808.09639
    • Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for Hardy spaces on spaces of homogeneous type with finite measure and...
    • Bui, T.A., Duong, X.T., Ly, F.K.: Maximal function characterizations for new local Hardy type spaces on spaces of homogeneous type. Trans....
    • Calderón, A.: An atomic decomposition of distributions in parabolic H^p spaces. Adv. Math. 25, 216–225 (1977)
    • Cao, J., Chang, D.-C., Yang, D., Yang, S.: Weighted local Orlicz–Hardy spaces on domains and their applications in inhomogeneous Dirichlet...
    • Cao, J., Chang, D.-C., Yang, D., Yang, S.: Riesz transform characterizations of Musielak–Orlicz–Hardy spaces. Trans. Am. Math. Soc. 368, 6979–7018...
    • Chang, D.-C., Dafni, G., Stein, E.M.: Hardy spaces, {\rm BMO} and boundary value problems for the Laplacian on a smooth domain in {\mathbb{R}}^n....
    • Chang, D.-C., Fu, Z., Yang, D., Yang, S.: Real-variable characterizations of Musielak–Orlicz–Hardy spaces associated with Schrödinger operators...
    • Chang, D.-C., Krantz, S.G., Stein, E.M.: Hardy spaces and elliptic boundary value problems. Contemp. Math. 137, 119–131 (1992)
    • Chang, D.-C., Krantz, S.G., Stein, E.M.: H^p theory on a smooth domain in {{\mathbb{R}}}^N and elliptic boundary value problems. J. Funct....
    • Cruz-Uribe, D., Neugebauer, C.J.: The structure of the reverse Hölder classes. Trans. Am. Math. Soc. 347, 2941–2960 (1995)
    • Coifman, R.R., Meyer, Y., Stein, E.M.: Some new function spaces and their applications to harmonic analysis. J. Funct. Anal. 62, 304–335 (1985)
    • Coifman, R.R., Weiss, G.: Analyse Harmonique Non-Commutative sur Certains Espaces Homogènes, (French) Étude de Certaines Intégrales Singulières....
    • Coifman, R.R., Weiss, G.: Extensions of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
    • Colombo, M., Mingione, G.: Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal. 218, 219–273 (2015)
    • Davies, E.B.: Heat Kernels and Spectral Theory. Cambridge Tracts in Mathematics 92, Cambridge University Press, Cambridge (1989)
    • Dekel, S., Kerkyacharian, G., Kyriazis, G., Petrushev, P.: Hardy spaces associated with non-negative self-adjoint operators. Stud. Math. 239,...
    • Duong, X.T., Hofmann, S., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces and regularity for the inhomogeneous Dirichlet and Neumann problems....
    • Duong, X.T., Li, J.: Hardy spaces associated to operators satisfying Davies–Gaffney estimates and bounded holomorphic functional calculus....
    • Duong, X.T., Yan, L.: On the atomic decomposition for Hardy spaces on Lipschitz domains of {{\mathbb{R}}}^n. J. Funct. Anal. 215, 476–486...
    • Dziubański, J.: Note on H^1 spaces related to degenerate Schrödinger operators. Ill. J. Math. 49, 1271–1297 (2005)
    • Dziubański, J., Zienkiewicz, J.: H^p spaces for Schrödinger operators. In: Fourier Analysis and Related Topics, 45–53, Banach Center Publ.,...
    • Fefferman, C., Stein, E.M.: H^p spaces of several variables. Acta Math. 129, 137–193 (1972)
    • Fu, X., Chang, D.-C., Yang, D.: Recent progress in bilinear decompositions. Appl. Anal. Optim. 1, 153–210 (2017)
    • Fu, X., Yang, D.: Products of functions in H^1_\rho ({\cal{X}}) and {\rm BMO}_\rho ({\cal{X}}) over RD-spaces and applications to Schrödinger...
    • Fu, X., Yang, D., Liang, Y.: Products of functions in {\rm BMO}({\cal{X}}) and H^1_{{\rm at}}({\cal{X}}) via wavelets over spaces of homogeneous...
    • Grafakos, L.: Modern Fourier Analysis. Graduate Texts in Mathematics 250, 3rd edn. Springer, New York (2014)
    • Gwiazda, P., Skrzypczak, I., Zatorska-Goldstein, A.: Existence of renormalized solutions to elliptic equation in Musielak–Orlicz space. J....
    • Han, Y., Han, Y., Li, J., Tan, C.: Hardy and Carleson measure spaces associated with operators on spaces of homogeneous type. Potential Anal....
    • Harboure, E., Salinas, O., Viviani, B.: A look at {\rm BMO}_\phi (\omega ) through Carleson measures. J. Fourier Anal. Appl. 13, 267–284 (2007)
    • Harjulehto, P., Hästö, P., Latvala, V., Toivanen, O.: Critical variable exponent functionals in image restoration. Appl. Math. Lett. 26, 56–60...
    • Harjulehto, P., Hästö, P., Klèn, R.: Generalized Orlicz spaces and related PDE. Nonlinear Anal. 143, 155–173 (2016)
    • Hofmann, S., Lu, G., Mitrea, D., Mitrea, M., Yan, L.: Hardy spaces associated to non-negative self-adjoint operators satisfying Davies–Gaffney...
    • Hofmann, S., Mayboroda, S.: Hardy and BMO spaces associated to divergence form elliptic operators. Math. Ann. 344, 37–116 (2009)
    • Hofmann, S., Mayboroda, S., McIntosh, A.: Second order elliptic operators with complex bounded measurable coefficients in L^p, Sobolev and...
    • Hou, S., Yang, D., Yang, S.: Lusin area function and molecular characterizations of Musielak-Orlicz Hardy spaces and their applications. Commun....
    • Huang, J., Li, P., Liu, Y.: Regularity properties of the heat kernel and area integral characterization of Hardy space H^1_{{\cal{L}}} related...
    • Jiang, R., Yang, D.: New Orlicz–Hardy spaces associated with divergence form elliptic operators. J. Funct. Anal. 258, 1167–1224 (2010)
    • Jiang, R., Yang, D.: Orlicz–Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Commun. Contemp. Math. 13, 331–373...
    • Jiang, R., Yang, Da., Yang, Do.: Maximal function characterizations of Hardy spaces associated with magnetic Schrödinger operators. Forum...
    • Johnson, R., Neugebauer, C.J.: Homeomorphisms preserving A_p. Rev. Mat. Iberoam. 3, 249–273 (1987)
    • Kbiri Alaoui, M., Nabil, T., Altanji, M.: On some new non-linear diffusion models for the image filtering. Appl. Anal. 93, 269–280 (2014)
    • Ky, L.D.: Bilinear decompositions and commutators of singular integral operators. Trans. Am. Math. Soc. 365, 2931–2958 (2013)
    • Ky, L.D.: New Hardy spaces of Musielak–Orlicz type and boundedness of sublinear operators. Integral Equ. Oper. Theory 78, 115–150 (2014)
    • Liang, Y., Yang, D.: Intrinsic square function characterizations of Musielak–Orlicz Hardy spaces. Trans. Am. Math. Soc. 367, 3225–3256 (2015)
    • Liu, L., Chang, D.-C., Fu, X., Yang, D.: Endpoint boundedness of commutators on spaces of homogeneous type. Appl. Anal. 96, 2408–2433 (2017)
    • Liu, L., Chang, D.-C., Fu, X., Yang, D.: Endpoint estimates of linear commutators on Hardy spaces over spaces of homogeneous type. Math. Methods...
    • Liu, L., Yang, D., Yuan, W.: Bilinear decompositions for products of Hardy and Lipschitz spaces on spaces of homogeneous type. Diss. Math....
    • Liu, S., Song, L.: An atomic decomposition of weighted Hardy spaces associated to self-adjoint operators. J. Funct. Anal. 265, 2709–2723 (2013)
    • Matejczyk, B., Wróblewska-Kamińska, A.: Unsteady flows of heat-conducting non-Newtonian fluids in Musielak–Orlicz spaces. Nonlinearity 31,...
    • Müller, S.: Hardy space methods for nonlinear partial differential equations. Tatra Mt. Math. Publ. 4, 159–168 (1994)
    • Musielak, J.: Orlicz Spaces and Modular Spaces. Lecture Notes in Mathematics 1034, Springer, Berlin (1983)
    • Musielak, J., Orlicz, W.: On modular spaces. Stud. Math. 18, 49–65 (1959)
    • Nakai, E., Yabuta, K.: Pointwise multipliers for functions of weighted bounded mean oscillation on spaces of homogeneous type. Math. Jpn....
    • Nakano, H.: Modulared Semi-Ordered Linear Spaces. Maruzen Co., Ltd, Tokyo (1950)
    • Ouhabaz, E.M.: Analysis of Heat Equations on Domains. Princeton University Press, Princeton, NJ (2005)
    • Rao, M., Ren, Z.: Theory of Orlicz Spaces. Marcel Dekker Inc, New York (1991)
    • Russ, E.: The atomic decomposition for tent spaces on spaces of homogeneous type, In: CMA/AMSI Research Symposium “Asymptotic Geometric Analysis,...
    • Saloff-Coste, L.: Parabolic Harnack inequality for divergence-form second-order differential operators. Potential Anal. 4, 429–467 (1995)
    • Song, L., Yan, L.: Riesz transforms associated to Schrödinger operators on weighted Hardy spaces. J. Funct. Anal. 259, 1466–1490 (2010)
    • Song, L., Yan, L.: A maximal function characterization for Hardy spaces associated to nonnegative self-adjoint operators satisfying Gaussian...
    • Song, L., Yan, L.: Maximal function characterizations for Hardy spaces associated with nonnegative self-adjoint operators on spaces of homogeneous...
    • Stein, E.M.: Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory integrals. Princeton University Press, Princeton, NJ...
    • Stein, E.M., Weiss, G.: On the theory of harmonic functions of several variables. I. The theory of H^p-spaces. Acta Math. 103, 25–62 (1960)
    • S̀wierczewska-Gwiazda, A.: Nonlinear parabolic problems in Musielak–Orlicz spaces. Nonlinear Anal. 98, 48–65 (2014)
    • Yan, L.: Classes of Hardy spaces associated with operators, duality theorem and applications. Trans. Am. Math. Soc. 360, 4383–4408 (2008)
    • Yang, D., Liang, Y., Ky, L.D.: Real-Variable Theory of Musielak–Orlicz Hardy Spaces. Lecture Notes in Mathematics 2182, Springer, Cham (2017)
    • Yang, Da., Yang, Do.: Maximal function characterizations of Musielak–Orlicz–Hardy spaces associated with magnetic Schrödinger operators. Front....
    • Yang, D., Yang, S.: Local Hardy spaces of Musielak–Orlicz type and their applications. Sci. China Math. 55, 1677–1720 (2012)
    • Yang, D., Yang, S.: Orlicz–Hardy spaces associated with divergence operators on unbounded strongly Lipschitz domains of {\mathbb{R}}^n. Indiana...
    • Yang, D., Yang, S.: Real-variable characterizations of Orlicz–Hardy spaces on strongly Lipschitz domains of {\mathbb{R}}^n. Rev. Math. Iberoam....
    • Yang, D., Yang, S.: Musielak–Orlicz-Hardy spaces associated with operators and their applications. J. Geom. Anal. 24, 495–570 (2014)
    • Yang, D., Yang, S.: Maximal function characterizations of Musielak–Orlicz–Hardy spaces associated to non-negative self-adjoint operators satisfying...
    • Yang, D., Yuan, W., Zhuo, C.: Musielak–Orlicz Besov-type and Triebel–Lizorkin-type spaces. Rev. Math. Complut. 27, 93–157 (2014)
    • Yang, D., Zhang, J.: Variable Hardy spaces associated with operators satisfying Davies–Gaffney estimates on metric measure spaces of homogeneous...
    • Yang, D., Zhang, J., Zhuo, C.: Variable Hardy spaces associated with operators satisfying Davies–Gaffney estimates. Proc. Edinb. Math. Soc....
    • Yang, D., Zhuo, C.: Molecular characterizations and dualities of variable exponent Hardy spaces associated with operators. Ann. Acad. Sci....
    • Yang, D., Zhuo, C.: Maximal function characterizations of variable Hardy spaces associated with non-negative self-adjoint operators satisfying...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno