If ? is a positive Borel measure on the interval [0, 1) we let ? be the Hankel matrix ?=(??,?)?,?≥0 with entries ??,?=??+? , where, for ?=0,1,2,… , ?? denotes the moment of order n of ? . This matrix induces formally the operator ?(?)(?)=∑?=0∞(∑?=0∞??,???)?? on the space of all analytic functions ?(?)=∑∞?=0???? , in the unit disc ? . This is a natural generalization of the classical Hilbert operator. In this paper we study the action of the operators ? on mean Lipschitz spaces of analytic functions.
© 2008-2024 Fundación Dialnet · Todos los derechos reservados