Ir al contenido

Documat


Mean Lipschitz spaces and a generalized Hilbert operator

  • Autores: Noel Merchán
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 1, 2019, págs. 59-69
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0217-y
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • If \mu is a positive Borel measure on the interval [0, 1) we let \mathcal {H}_\mu be the Hankel matrix \mathcal {H}_\mu =(\mu _{n, k})_{n,k\ge 0} with entries \mu _{n, k}=\mu _{n+k}, where, for n\,=\,0, 1, 2, \dots, \mu _n denotes the moment of order n of \mu. This matrix induces formally the operator \begin{aligned}\mathcal {H}_\mu (f)(z)= \sum _{n=0}^{\infty }\left( \sum _{k=0}^{\infty } \mu _{n,k}{a_k}\right) z^n\end{aligned} on the space of all analytic functions f(z)=\sum _{k=0}^\infty a_kz^k, in the unit disc {\mathbb {D}}. This is a natural generalization of the classical Hilbert operator. In this paper we study the action of the operators \mathcal {H}_\mu on mean Lipschitz spaces of analytic functions.

  • Referencias bibliográficas
    • Anderson, J.M., Clunie, J., Pommerenke, C.: On Bloch functions and normal functions. J. Reine Angew. Math. 270, 12–37 (1974)
    • Bao, G., Wulan, H.: Hankel matrices acting on Dirichlet spaces. J. Math. Anal. Appl. 409(1), 228–235 (2014)
    • Blasco, O., Girela, D., Márquez, M.A.: Mean growth of the derivative of analytic functions, bounded mean oscillation and normal functions....
    • Blasco, O., de Souza, G.S.: Spaces of analytic functions on the disc where the growth of M_ p(F, r) depends on a weight. J. Math. Anal. Appl....
    • Bloom, S., de Souza, G.S.: Weighted Lipschitz spaces and their analytic characterizations. Constr. Approx. 10, 339–376 (1994)
    • Bourdon, P., Shapiro, J., Sledd, W.: Fourier series, mean Lipschitz spaces and bounded mean oscillation, Analysis at Urbana 1. In: Berkson,...
    • Chatzifountas, C., Girela, D., Peláez, J.A.: A generalized Hilbert matrix acting on Hardy spaces. J. Math. Anal. Appl. 413(1), 154–168 (2014)
    • Diamantopoulos, E., Siskakis, A.G.: Composition operators and the Hilbert matrix. Stud. Math. 140, 191–198 (2000)
    • Duren, P.L.: Theory of H^{p} Spaces. Academic Press, New York (1970). Reprint: Dover, Mineola, New York (2000)
    • Galanopoulos, P., Peláez, J.A.: A Hankel matrix acting on Hardy and Bergman spaces. Stud. Math. 200(3), 201–220 (2010)
    • Girela, D.: On a theorem of Privalov and normal functions. Proc. Am. Math. Soc. 125, 433–442 (1997)
    • Girela, D.: Mean Lipschitz spaces and bounded mean oscillation. Ill. J. Math. 41, 214–230 (1997)
    • Girela, D.: Analytic functions of bounded mean oscillation. In: Aulaskari, R. (ed.) Complex Function Spaces, Mekrijärvi 1999, vol. 4, pp....
    • Girela, D., González, C.: Some results on mean Lipschitz spaces of analytic functions. Rocky Mt. J. Math. 30(3), 901–922 (2000)
    • Girela, D., Merchán, N.: A generalized Hilbert operator acting on conformally invariant spaces. Banach. J. Math. Anal. https://doi-org.sire.ub.edu/10.1215/17358787-2017-0023
    • Girela, D., Merchán, N.: A Hankel matrix acting on spaces of analytic functions. Integr. Equ. Oper. Theory 89(4), 581–594 (2017)
    • Hardy, G.H., Littlewood, J.E.: Some properties of fractional integrals, II. Math. Z. 34, 403–439 (1932)
    • Pavlović, M.: Analytic functions with decreasing coefficients and Hardy and Bloch spaces. Proc. Edinb. Math. Soc. Ser. 2 56(2), 623–635 (2013)
    • Peller, V.: Hankel Operators and Their Applications. Springer Monographs in Mathematics. Springer, New York (2003)
    • Power, S.C.: Vanishing Carleson measures. Bull. Lond. Math. Soc. 12, 207–210 (1980)
    • Widom, H.: Hankel matrices. Trans. Am. Math. Soc. 121, 1–35 (1966)
    • Zhao, R.: On logarithmic Carleson measures. Acta Sci. Math. (Szeged) 69(3–4), 605–618 (2003)
    • Zhu, K.: Operator Theory in Function Spaces, Mathematical Surveys and Monographs, vol. 138, 2nd edn. American Mathematical Society, Providence...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno