Ir al contenido

Documat


Comparison theorems for deformation functors via invariant theory

  • Autores: Jan Arthur Christophersen, Jan O. Kleppe
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 70, Fasc. 1, 2019, págs. 1-32
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0232-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We compare deformations of algebras to deformations of schemes in the setting of invariant theory. Our results generalize comparison theorems of Schlessinger and the second author for projective schemes. We consider deformations (abstract and embedded) of a scheme X which is a good quotient of a quasi-affine scheme X^\prime by a linearly reductive group G and compare them to invariant deformations of an affine G-scheme containing X^\prime as an open invariant subset. The main theorems give conditions for when the comparison morphisms are smooth or isomorphisms.

  • Referencias bibliográficas
    • Altmann, K.: Minkowski sums and homogeneous deformations of toric varieties. Tohoku Math. J. (2) 47(2), 151–184 (1995)
    • Altmann, K.: One parameter families containing three-dimensional toric-Gorenstein singularities. In: Explicit Birational Geometry of 3-folds,...
    • André, M.: Homologie des algèbres commutatives. Springer, Berlin (1974)
    • Arzhantsev, I., Derenthal, U., Hausen, J., Laface, A.: Cox Rings, Cambridge Studies in Advanced Mathematics, vol. 144. Cambridge University...
    • Batyrev, V.V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3(3), 493–535 (1994)
    • Batyrev, V.V., Cox, D.A.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 293–338 (1994)
    • Ballico, E., Ellia, P.: The maximal rank conjecture for nonspecial curves in ${ P}^3$. Invent. Math. 79(3), 541–555 (1985)
    • Cox, D.A., Katz, S.: Mirror Symmetry and Algebraic Geometry, Mathematical Surveys and Monographs, vol. 68. American Mathematical Society,...
    • Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Graduate Studies in Mathematics, vol. 124. American Mathematical Society, Philadelphia...
    • Cox, D.A.: The homogeneous coordinate ring of a toric variety. J. Algebr. Geom. 4(1), 17–50 (1995)
    • Curtin, D.J.: Obstructions to deforming a space curve. Trans. Am. Math. Soc. 267, 83–94 (1981)
    • Delorme, C.: Espaces projectifs anisotropes. Bull. Soc. Math. France 103(2), 203–223 (1975)
    • Dolgachev, I.: Weighted Projective Varieties, Group Actions and Vector Fields (Vancouver, B.C., 1981), Lecture Notes in Mathematics, vol....
    • Eisenbud, D., Mustaţǎ, M., Stillman, M.: Cohomology on toric varieties and local cohomology with monomial supports. J. Symb. Comput. 29(4–5),...
    • Fantechi, B., Manetti, M.: Obstruction calculus for functors of Artin rings, I. J. Algebra 202, 541–576 (1998)
    • Geramita, A.V., Maroscia, P., Roberts, L.G.: The Hilbert function of a reduced $k$-algebra. J. Lond. Math. Soc. (2) 28(3), 443–452 (1983)
    • Grothendieck, A.: Cohomologie locale des faisceaux cohérents et théorèmes de Lefschetz locaux et globaux (SGA 2), Documents Mathématiques...
    • Hartshorne, R.: Local Cohomology. A seminar given by A. Grothendieck, Harvard Univ., Fall 1961. Springer Lecture Notes in Mathematics, vol....
    • Hartshorne, R.: Deformation Theory. Graduate Texts in Mathematics, vol. 257. Springer, New York (2010)
    • Haiman, M., Sturmfels, B.: Multigraded Hilbert schemes. J. Algebr. Geom. 13(4), 725–769 (2004)
    • Illusie, L.: Complexe cotangent et déformations. I, Lecture Notes in Mathematics, vol. 239. Springer, Berlin (1971)
    • Ilten, N.O.: Deformations of smooth toric surfaces. Manuscr. Math. 134(1–2), 123–137 (2011)
    • Kleppe, J.O.: Deformations of graded algebras. Math. Scand. 45, 205–231 (1979)
    • Kleppe, J.O.: The smoothness and the dimension of ${\rm PGor}(H)$ and of other strata of the punctual Hilbert scheme. J. Algebra 200(2), 606–628...
    • Laudal, O.A.: Formal Moduli of Algebraic Structures. Lecture Notes in Mathematics, vol. 754. Springer, Berlin (1979)
    • Lichtenbaum, S., Schlessinger, M.: The cotangent complex of a morphism. Trans. Am. Math. Soc. 128, 41–70 (1967)
    • Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory. Ergeb. Math. Grenzgebiete, vol. 34, 3rd edn. Springer, Berlin (1994)
    • Mukai, S.: An Introduction to Invariants and Moduli. Cambridge Studies in Advanced Mathematics, vol. 81. Cambridge University Press, Cambridge...
    • Mumford, D.: Further pathologies in algebraic geometry. Am. J. Math. 84, 642–648 (1962)
    • Mustaţǎ, M.: Local cohomology at monomial ideals. J. Symb. Comput. 29(4–5), 709–720 (2000)
    • Piene, R., Schlessinger, M.: On the Hilbert scheme compactification of the space of twisted cubics. Am. J. Math. 107, 761–774 (1985)
    • Rim, D.S.: Equivariant $G$-structure on versal deformations. Trans. Am. Math. Soc. 257(1), 217–226 (1980)
    • Schlessinger, M.: Functors of Artin rings. Trans. Am. Math. Soc. 130, 208–222 (1968)
    • Schlessinger, M.: Rigidity of quotient singularities. Invent. Math. 14, 17–26 (1971)
    • Schlessinger, Michael: On rigid singularities. In: Proceedings of the Conference on Complex Analysis, Rice University Studies, vol. 59, pp....
    • Sernesi, E.: Deformations of Algebraic Schemes. Springer, Berlin (2006)
    • Seshadri, C.S.: Quotient spaces modulo reductive algebraic groups. Ann. Math. 95, 511–556 (1972)
    • Stevens, J.: On canonical singularities as total spaces of deformations. Abh. Math. Sem. Univ. Hamburg 58, 275–283 (1988)
    • Tannenbaum, A.: Castelnuovo curves and unobstructed deformations. Math. Z. 174(2), 141–147 (1980)
    • Totaro, B.: Jumping of the nef cone for Fano varieties. J. Algebr. Geom. 21(2), 375–396 (2012)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno