Ir al contenido

Documat


Disjoint hypercyclic weighted pseudo-shifts on Banach sequence spaces

  • Autores: Ya Wang, Ze-Hua Zhou
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 3, 2018, págs. 437-449
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0216-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this article, we characterize the disjoint hypercyclicity of finite weighted pseudo-shifts on an arbitrary Banach sequence space. Moreover, we obtain some interesting consequences of this characterization.

  • Referencias bibliográficas
    • Bayart, F., Matheron, É.: Dynamics of Linear Operators. Cambridge Tracts in Mathematics, vol. 179. Cambridge University Press, Cambridge (2009)
    • Bernal-González, L.: Disjoint hypercyclic operators. Studia Math. 182(2), 113–131 (2007)
    • Bès, J., Martin, Ö.: Compositional disjoint hypercyclicity equals disjoint supercyclicity. Houst. J. Math. 38(4), 1149–1163 (2012)
    • Bès, J., Martin, Ö., Sanders, R.: Weighted shifts and disjoint hypercyclicity. J. Oper. Theory 72(1), 15–40 (2014)
    • Bès, J., Martin, Ö., Peris, A.: Disjoint hypercyclic linear fractional composition operators. J. Math. Anal. Appl. 381, 843–856 (2011)
    • Bès, J., Martin, Ö., Peris, A., Shkarin, S.: Disjoint mixing operators. J. Funct. Anal. 263(5), 1283–1322 (2012)
    • Bès, J., Peris, A.: Disjointness in hypercyclicity. J. Math. Anal. Appl. 336, 297–315 (2007)
    • Bernal-González, L., Grosse-Erdmann, K.-G.: The Hypercyclicity Criterion for sequences of operators. J. Studia Math. 157(1), 17–32 (2003)
    • Grosse-Erdmann, K.-G., Peris Manguillot, A.: Linear Chaos. Universitext, Springer, New York (2011)
    • Grosse-Erdmann, K.-G.: Hypercyclic and chaotic weighted shifts. Studia Math. 139(1), 47–68 (2000)
    • Han, S.A., Liang, Y.X.: Disjoint hypercyclic weighted translations generated by aperiodic elements. Collect. Math. 67(3), 347–356 (2016)
    • Hazarika, M., Arora, S.C.: Hypercyclic operator weighted shifts. Bull. Korean Math. Soc. 41(4), 589–598 (2004)
    • Kitai, C.: Invariant closed sets for linear operators. Ph.D. thesis, Univ. of Toronto (1982)
    • León-Saavedra, F.: Notes about the Hypercyclicity Criterion. Math. Slovaca 53(3), 313–319 (2003)
    • Martin, Ö. : Disjoint hypercyclic and supercyclic composition operators. Ph.D. thesis, Bowling Green State University (2010)
    • Salas, H.: Dual disjoint hypercyclic weighted shifts. J. Math. Anal. Appl. 374(1), 106–117 (2011)
    • Sanders, R., Shkarin, S.: Existence of disjoint weakly mixing operators that fail to satisfy the Disjoint Hypercyclicity Criterion. J. Math....
    • Shkarin, S.: A short proof of existence of disjoint hypercyclic operators. J. Math. Anal. Appl. 367(2), 713–715 (2010)
    • Salas, H.: The strong disjoint blow-up/collapse property. J. Funct. Spaces Appl. Article ID 146517 (2013)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno