For 0< \lambda < \frac{1}{2}, let B _{\lambda } be the Bochner–Riesz multiplier of index \lambda on the plane. Associated to this multiplier is the critical index 1< p_ \lambda = \frac{4}{3+2 \lambda } < \frac{4}{3}. We prove a sparse bound for B _{\lambda } with indices (p_ \lambda , q), where p_ \lambda '< q < 4. This is a further quantification of the endpoint weak L^{p_ \lambda } boundedness of B _{\lambda }, due to Seeger. Indeed, the sparse bound immediately implies new endpoint weighted weak type estimates for weights in A_1 \cap RH _{\rho }, where \rho > \frac{4}{4 - 3 p _{\lambda }}.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados