Ir al contenido

Documat


Koszul properties of the moment map of some classical representations

  • Autores: Aldo Conca Árbol académico, Hans Christian Herbig, Srikanth B. Iyengar
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 3, 2018, págs. 337-357
  • Idioma: inglés
  • DOI: 10.1007/s13348-018-0226-x
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • This work concerns the moment map \mu associated with the standard representation of a classical Lie algebra. For applications to deformation quantization it is desirable that S/(\mu ), the coordinate algebra of the zero fibre of \mu, be Koszul. The main result is that this algebra is not Koszul for the standard representation of \mathfrak {sl}_{n}, and of \mathfrak {sp}_{n}. This is deduced from a computation of the Betti numbers of S/(\mu ) as an S-module, which are of interest also from the point of view of commutative algebra.

  • Referencias bibliográficas
    • Avramov, L.L.: The Hopf algebra of a local ring. Izv. Akad. Nauk SSSR Ser. Mat. 38, 253–277 (1974)
    • Avramov, L.L.: Infinite free resolutions. In: Six Lectures on Commutative Algebra (Bellaterra, 1996). Progress in Mathematics, vol. 166, pp....
    • Avramov, L.L., Conca, A., Iyengar, S.B.: Free resolutions over commutative Koszul algebras. Math. Res. Lett. 17, 197–210 (2010)
    • Avramov, L.L., Conca, A., Iyengar, S.B.: Subadditivity of syzygies of Koszul algebras. Math. Ann. 361, 511–534 (2015)
    • Bordemann, M., Herbig, H.-C., Pflaum, M.J.: A homological approach to singular reduction in deformation quantization. In: Sternberg, S. (ed.)...
    • Bruns, W., Vetter, U.: Determinantal rings. Lecture Notes in Mathematics, vol. 1327. Springer, Berlin (1988)
    • Conca, A., De Negri, E., Rossi, M.E.: Koszul Algebras and Regularity, Commutative Algebra, 285–315. Springer, New York (2013)
    • Fröberg, R.: Koszul algebras. In: Advances in Commutative Ring Theory, Proceedings of Fez Conference 1997. Lectures Notes in Pure and Applied...
    • Griffiths, P., Harris, J.: Principles of Algebraic Geometry, Reprint of the 1978 original, Wiley Classics Library. Wiley, New York (1994)
    • Gugenheim, V.K.A.M., May, J.P.: On the Theory and Applications of Differential Torsion Products, Memoirs of the American Mathematical Society,...
    • Henneaux, M., Teitelboim, C.: Quantization of Gauge Systems. Princeton University Press, Princeton (1992)
    • Herbig, H.-C., Schwarz, G.W.: The Koszul complex of a moment map. J. Symplectic Geom. 11, 497–508 (2013)
    • Hreinsdottir, F.: The Koszul dual of the ring of commuting matrices. Commun. Algebra 26, 3807–3819 (2011)
    • Koshy, T.: Catalan Numbers with Applications, p. 422. Oxford University Press, Oxford (2009)
    • Kraines, D.: Massey higher products. Trans. Am. Math. Soc. 124, 431–449 (1966)
    • May, J.P.: Matrix massey products. J. Algebra 12, 533–568 (1969)
    • The On-Line Encyclopedia of Integer Sequences, published electronically at http://oeis.org (2014)
    • Polischuk, A., Positselski, L.: Quadratic Algebras. AMS University Lecture Series (2005)
    • Roos, J.-E.: Homological properties of the homology algebra of the Koszul complex of a local ring: examples and questions. J. Algebra 465,...
    • Shapiro, L.W.: A Catalan triangle. Discret. Math. 14, 83–90 (1976)
    • Schwarz, G.W.: Differential operators on quotients of simple groups. J. Algebra 169, 248–273 (1994)
    • Schwarz, G.W.: Lifting differential operators from orbit spaces. Ann. Sci. École Norm. Super. 28(4), 253–305 (1995)
    • Stanley, R.P.: Enumerative Combinatorics. Volume 2, Cambridge Studies in Advanced Mathematics, vol. xii, p. 581. Cambridge University Press,...
    • Tate, J.: Homology of Noetherian rings and local rings. Ill. J. Math. 1, 14–27 (1957)
    • Vinberg, È.B.: Complexity of actions of reductive groups. Funktsional. Anal. i Prilozhen. 20, 1–13 (1986)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno