Ir al contenido

Documat


On generalized Littlewood–Paley functions

  • Autores: Hussain Al-Qassem, L. Cheng, Yibiao Pan
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 2, 2018, págs. 297-314
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0208-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We study the L^{p} boundedness of certain classes of generalized Littlewood–Paley functions \mathcal{S}_{\Phi }^{(\lambda )}(f). We obtain L^{p} estimates of \mathcal{S}_{\Phi }^{(\lambda )}(f) with sharp range of p and under optimal conditions on \Phi. By using these estimates along with an extrapolation argument we obtain some new and improved results on generalized Littlewood–Paley functions. The approach in proving our results is mainly based on proving vector-valued inequalities and in turn the proof of our results (in the case \lambda =2) provides us with alternative proofs of the results obtained by Duoandikoetxea as his approach is based on proving certain weighted norm inequalities.

  • Referencias bibliográficas
    • Al-Qassem, H., Pan, Y.: On rough maximal operators and Marcinkiewicz integrals along submanifolds. Stud. Math. 190(1), 73–98 (2009)
    • Al-Qassem, H., Pan, Y.: On certain estimates for Marcinkiewicz integrals and extrapolation. Collect. Math. 60(2), 123–145 (2009)
    • Al-Qassem, H., Cheng, L.C., Pan, Y.: On rough generalized parametric Marcinkiewicz integrals. J. Math. Inequal. 11(3), 763–780 (2017)
    • Al-Salman, A., Al-Qassem, H., Cheng, L., Pan, Y.: L^{p} bounds for the function of Marcinkiewicz. Math. Res. Lett. 9, 697–700 (2002)
    • Benedek, A., Calderón, A., Panzone, R.: Convolution operators on Banach space valued functions. Proc. Nat. Acad. Sci. U.S.A. 48, 356–365 (1962)
    • Bourgain, J.: Averages in the plane over convex curves and maximal operators. J. Anal. Math. 47, 69–85 (1986)
    • Cheng, L.C.: On Littlewood–Paley functions. Proc. Am. Math. Soc. 135, 3241–3247 (2007)
    • Chen, J., Fan, D., Ying, Y.: Singular integral operators on function spaces. J. Math. Anal. Appl. 276, 691–708 (2002)
    • Coifman, R., Weiss, G.: Extension of Hardy spaces and their use in analysis. Bull. Am. Math. Soc. 83, 569–645 (1977)
    • Ding, Y., Fan, D., Pan, Y.: On Littlewood–Paley functions and singular integrals. Hokkaido Math. J. 29, 537–552 (2000)
    • Ding, Y., Sato, S.: Littlewood–Paley functions on homogeneous groups. Forum Math. 28, 43–55 (2014)
    • Duoandikoetxea, J.: Sharp L^{p} boundedness for a class of square functions. Rev. Mat. Complut. 26(2), 535–548 (2013)
    • Duoandikoetxea, J., Rubio de Francia, J.L.: Maximal functions and singular integral operators via Fourier transform estimates. Invent. Math....
    • Fan, D., Sato, S.: Remarks on Littlewood–Paley functions and singular integrals. J. Math. Soc. Jpn. 54(3), 565–585 (2002)
    • Fan, D., Wu, H.: On the generalized Marcinkiewicz integral operators with rough kernels. Can. Math. Bull. 54(1), 100–112 (2011)
    • Iwaniec, T., Onninen, J.: H^{1}-estimates of Jacobians by subdeterminants. Math. Ann. 324(2), 341–358 (2002)
    • Keitoku, M., Sato, E.: Block spaces on the unit sphere in { R} ^{n}. Proc. Am. Math. Soc. 119, 453–455 (1993)
    • Le, H.V.: Singular integrals with mixed homogeneity in Triebel–Lizorkin spaces. J. Math. Anal. Appl. 345, 903–916 (2008)
    • Lu, S., Taibleson, M., Weiss, G.: Spaces Generated by Blocks. Beijing Normal University Press, Beijing (1989)
    • Sato, S.: Remarks on square functions in the Littlewood–Paley theory. Bull. Aust. Math. Soc. 58, 199–211 (1998)
    • Sato, S.: Estimates for Littlewood–Paley functions and extrapolation. Integral Equ. Oper. Theory 62(3), 429–440 (2008)
    • Sawano, Y., Yabuta, K.: Fractional type Marcinkiewicz integral operators associated to surfaces. J. Inequal. Appl. 2014, 232 (2014)
    • Stein, E.M.: On the functions of Littlewood–Paley, Lusin and Marcinkiewicz. Trans. Am. Math. Soc. 88, 430–466 (1958)
    • Stein, E.M.: The development of square functions in the work of Zygmund. Bull. Am. Math. Soc. 7, 359–376 (1982)
    • Stein, E.M.: Maximal functions. I. Spherical means. Proc. Nat. Acad. Sci. U.S.A 73(7), 2174–2175 (1976)
    • Yabuta, K.: Triebel–Lizorkin space boundedness of Marcinkiewicz integrals associated to surfaces. Appl. Math. A J. Chin. Univ. 30(4), 418–446...
    • Yano, S.: An extrapolation theorem. J. Math. Soc. Jpn. 3, 296–305 (1951)
    • Walsh, T.: On the function of Marcinkiewicz. Stud. Math. 44, 203–217 (1972)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno