Ir al contenido

Documat


Best rank k approximation for binary forms

  • Autores: Giorgio Ottaviani, Alicia Tocino Sánchez
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 1, 2018, págs. 163-171
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0206-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In the tensor space {{\mathrm {Sym}}}^d \mathbb {R}^2 of binary forms we study the best rank k approximation problem. The critical points of the best rank 1 approximation problem are the eigenvectors and it is known that they span a hyperplane. We prove that the critical points of the best rank k approximation problem lie in the same hyperplane. As a consequence, every binary form may be written as linear combination of its critical rank 1 tensors, which extends the Spectral Theorem from quadratic forms to binary forms of any degree. In the same vein, also the best rank k approximation may be written as a linear combination of the critical rank 1 tensors, which extends the Eckart–Young theorem from matrices to binary forms.

  • Referencias bibliográficas
    • Abo, H., Eklund, D., Kahle, T., Peterson, C.: Eigenschemes and the Jordan canonical form. Linear Algebra Appl. 496, 121–151 (2016)
    • Abo, H., Seigal, A., Sturmfels, B.: Eigenconfigurations of tensors. Algebr. Geom. Methods Discrete Math. Contemp. Math. 685, 1–25 (2017)
    • Draisma, J., Horobeţ, E., Ottaviani, G., Sturmfels, B., Thomas, R.: The Euclidean distance degree of an algebraic variety. Found. Comput....
    • Draisma, J., Ottaviani, G., Tocino, A.: Best rank k approximation for tensors. In preparation (2017)
    • Friedland, S., Tammali, V.: Low-rank approximation of tensors, numerical algebra, matrix theory, differential-algebraic equations and control...
    • Lee, H., Sturmfels, B.: Duality of multiple root loci. J. Algebra 446, 499–526 (2016)
    • Lim, L.H.: Singular values and eigenvalues of tensors: a variational approach. In: Proc. IEEE Internat. Workshop on Comput. Advances in Multi-sensor...
    • Maccioni, M.: The number of real eigenvectors of a real polynomial. Boll. Unione Mat. Ital. (2017). doi:10.1007/s40574-016-0112-y
    • Ottaviani, G., Paoletti, R.: A geometric perspective on the singular value decomposition. Rend. Istit. Mat. Univ. Trieste 47, 107–125 (2015)
    • Ottaviani, G., Spaenlehauer, P.J., Sturmfels, B.: Exact solutions in structured low-rank approximation. SIAM J. Matrix Anal. Appl. 35(4),...
    • Reznick, B.: Sums of Even Powers of Real Linear Forms, vol. 463, p. 96. Mem. Am. Math. Soc., Providence (1992)
    • Qi, L.: Eigenvalues of a real supersymmetric tensor. J. Symb. Comput. 40, 1302–1324 (2005)
    • Seigal, A., Sturmfels, B.: Real rank two geometry. J. Algebra 484, 310–333 (2017)
    • Sturmfels, B.: Tensors and their eigenvectors. Not. Am. Math. Soc. 63, 604–606 (2016)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno