Ir al contenido

Documat


A finite classification of (x, y)-primary ideals of low multiplicity

  • Autores: Paolo Mantero, Jason McCullough
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 1, 2018, págs. 107-130
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0196-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let S be a polynomial ring over an algebraically closed field k. Let x and y denote linearly independent linear forms in S so that {\mathfrak {p}}= (x,y) is a height two prime ideal. This paper concerns the structure of {\mathfrak {p}}-primary ideals in S. Huneke, Seceleanu, and the authors showed that for e \ge 3, there are infinitely many pairwise non-isomorphic {\mathfrak {p}}-primary ideals of multiplicity e. However, we show that for e \le 4 there is a finite characterization of the linear, quadric and cubic generators of all such {\mathfrak {p}}-primary ideals. We apply our results to improve bounds on the projective dimension of ideals generated by three cubic forms.

  • Referencias bibliográficas

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno