Ir al contenido

Documat


Schatten classes of generalized Hilbert operators

  • Autores: José Angel Peláez Márquez Árbol académico, Daniel Seco
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 1, 2018, págs. 83-105
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0195-5
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let \mathcal {D}_v denote the Dirichlet type space in the unit disc induced by a radial weight v for which \widehat{v}(r)=\int _r^1 v(s)\,\text {d}s satisfies the doubling property \int _r^1 v(s)\,\text {d}s\le C \int _{\frac{1+r}{2}}^1 v(s)\,\text {d}s. In this paper, we characterize the Schatten classes S_p(\mathcal {D}_v) of the generalized Hilbert operators \begin{aligned} \mathcal {H}_g(f)(z)=\int _0^1f(t)g'(tz)\,\text {d}t \end{aligned} acting on \mathcal {D}_v, where v satisfies certain Muckenhoupt type conditions. For p\ge 1, it is proved that \mathcal {H}_{g}\in S_p(\mathcal {D}_v) if and only if \begin{aligned} \int _0^1 \left( (1-r)\int _{-\pi }^\pi |g'(r\text {e}^{i\theta })|^2\,\text {d}\theta \right) ^{\frac{p}{2}}\frac{{\text {d}}r}{1-r} <\infty . \end{aligned}

  • Referencias bibliográficas
    • Aleman, A., Montes-Rodríguez, A., Sarafoleanu, A.: The eigenfunctions of the Hilbert matrix. Const. Approx. 36(3), 353–374 (2012)
    • Bergh, J., Löfström, J.: Interpolation Spaces: An Introduction, Grundleheren 223. Springer, Berlin (1976)
    • Diamantopoulos, E.: Hilbert matrix on Bergman spaces. Illinois J. Math. 48(3), 1067–1078 (2004). Fall
    • Diamantopoulos, E.: Operators induced by Hankel matrices on Dirichlet spaces. Analysis (Munich) 24(4), 345–360 (2004)
    • Dostanić, M., Jevtić, M., Vukotić, D.: Norm of the Hilbet matrix on Bergman and Hardy spaces and a theorem of Nehari type. J. Funct. Anal....
    • Duren, P.: Theory of H^p Spaces. Academic Press, New York-London (1970)
    • Galanopoulos, P., Girela, D., Peláez, J.A., Siskakis, A.: Generalized Hilbert operators. Ann. Acad. Sci. Fenn. Math. 39, 231–258 (2014)
    • Mateljevic, M., Pavlovic, M.: L^p-behaviour of power series with positive coefficients and Hardy spaces. Proc. Am. Math. Soc. 87, 309–316...
    • Muckenhoupt, B.: Hardy’s inequality with weights. Stud. Math. 64, 31–38 (1972)
    • Ortega, J.M., Fàbrega, J.: Mixed norm spaces and interpolation. Stud. Math. 109(3), 233–253 (1994)
    • Peláez, J.A., Rättyä, J.: Generalized Hilbert operators on weighted Bergman spaces. Adv. Math. 240, 227–267 (2013)
    • Peláez, J.A., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Mem. Am. Math. Soc. 227(1066) (2014)
    • Peláez, J.A.: Small weighted Bergman spaces, Proceedings of the Summer School “Complex and harmonic analysis and related topics” , Mekrijärvi,...
    • Tjani, M.: Compact composition operators on Besov spaces. Trans. Am. Math. Soc. 355(11), 4683–4698 (2003)
    • Zhu, K.: Operator Theory in Function Spaces, Second Edition, Mathematical Surveys and Monographs, vol. 138. American Mathematical Society,...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno