Ir al contenido

Documat


Equisingularity of map germs from a surface to the plane

  • Autores: Juan José Nuño Ballesteros Árbol académico, B. Oréfice, Joao Nivaldo Tomazella
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 1, 2018, págs. 65-81
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0194-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let (X, 0) be an ICIS of dimension 2 and let ?:(?,0)→(ℂ2,0) be a map germ with an isolated instability. We look at the invariants that appear when ?? is a smoothing of (X, 0) and ??:??→?? is a stabilization of f. We find relations between these invariants and also give necessary and sufficient conditions for a 1-parameter family to be Whitney equisingular. As an application, we show that a family (??,0) is Zariski equisingular if and only if it is Whitney equisingular and the numbers of cusps and double folds of a generic linear projection are constant with respect to t.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno