Ir al contenido

Documat


Equisingularity of map germs from a surface to the plane

  • Autores: Juan José Nuño Ballesteros Árbol académico, B. Oréfice, Joao Nivaldo Tomazella
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 69, Fasc. 1, 2018, págs. 65-81
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0194-6
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let (X, 0) be an ICIS of dimension 2 and let f:(X,0)\rightarrow (\mathbb C^2,0) be a map germ with an isolated instability. We look at the invariants that appear when X_s is a smoothing of (X, 0) and f_s:X_s\rightarrow B_\epsilon is a stabilization of f. We find relations between these invariants and also give necessary and sufficient conditions for a 1-parameter family to be Whitney equisingular. As an application, we show that a family (X_t,0) is Zariski equisingular if and only if it is Whitney equisingular and the numbers of cusps and double folds of a generic linear projection are constant with respect to t.

  • Referencias bibliográficas
    • Buchweitz, R.O., Greuel, G.M.: The Milnor number and deformations of complex curve singularities. Invent. Math. 58(3), 241–248 (1980)
    • Briançon, J., Speder, J.P.: Familles équisingulières de surfaces à singularité isolée. C. R. Acad. Sci. Paris Sér. A-B 280(Aii), A1013–A1016...
    • Eagon, J.A., Hochster, M.: Cohen–Macaulay rings, invariant theory, and the generic perfection of determinantal loci. Am. J. Math. 93, 1020–1058...
    • Gaffney, T.: Polar multiplicities and equisingularity of map germs. Topology 32(1), 185–223 (1993)
    • Gaffney, T., Mond, D.M.Q.: Cusps and double folds of germs of analytic maps {\mathbb{C}}^{2}\rightarrow {\mathbb{C}}^2. J. Lond. Math. Soc....
    • Gaffney, T., Mond, D.M.Q.: Weighted homogeneous maps from the plane to the plane. Math. Proc. Camb. Philos. Soc. 109(3), 451–470 (1991)
    • Gibson, C.G., Wirthmuller, K., du Plessis, A.A., Looijenga, E.J.N.: Topological stability of smooth mappings. In: Lecture Notes in Mathematics,...
    • Goryunov, V.: Singularities of projections of complete intersections. J. Soviet Math. 27, 2785–2811 (1984)
    • Greuel, G.M.: Dualitat in der lokalen kohomologie isolierter singularitaten. Math Ann. 250, 157–173 (1980)
    • Henry, J.P., Merle, M.: Fronces et doubles plis. Compos. Math. 101(1), 21–54 (1996)
    • Hernandes, M.E., Miranda, A.J., Peñafort-Sanchis, G.: An algorithm to compute a presentation of pushforward modules. Preprint arXiv:1703.03357...
    • Marar, W.L., Nuño-Ballesteros, J.J., Peñafort-Sanchis, G.: Double point curves for corank 2 map germs from {\mathbb{C}}^{2} to {\mathbb{C}}^{3}....
    • Matsumura, H.: Commutative Ring Theory, 2nd Edition. Cambridge Studies in Advanced Mathematics, vol. 8. Cambridge University Press, Cambridge...
    • Milnor, J., Orlik, P.: Isolated singularities defined by weighted homogeneous polynomials. Topology 9, 385–393 (1970)
    • Mond, D., Montaldi, J.: Deformations of maps on complete intersections. In: Damon’s {\fancyscript {K}}_{V} Equivalence and Bifurcations. London...
    • Mond, D., Pellikaan, R.: Fitting ideals and multiple points of analytic mappings. In: Algebraic Geometry and Complex Analysis (Pátzcuaro,...
    • Nuño-Ballesteros, J.J., Oréfice-Okamoto, B., Tomazella, J.N.: Non-negative deformations of weighted homogeneous singularities. Glasg. Math....
    • Nuño-Ballesteros, J.J., Oréfice-Okamoto, B., Tomazella, J.N.: Equisingularity of families of isolated determinantal singularities. Preprint...
    • Nuño-Ballesteros, J.J., Tomazella, J.N.: Equisingularity of families of map germs between curves. Math. Z. 272(1–2), 349–360 (2012)
    • Rieger, J.H.: Families of maps from the plane to the plane. J. Lond. Math. Soc. (2) 36(2), 351–369 (1987)
    • Speder, J.P.: Équisingularité et conditions de Whitney. Am. J. Math. 97(3), 571–588 (1975)
    • Teissier, B.: The hunting of invariants in the geometry of discriminants. Real and Complex Singularities, Oslo, pp. 565–678 (1977). Alphen...
    • Wall, C.T.C.: Finite determinacy of smooth map-germs. Bull. Lond. Math. Soc. 13(6), 481–539 (1981)
    • Whitney, H.: On singularities of mappings of euclidean spaces. I. Mappings of the plane into the plane. Ann. Math. (2) 62, 374–410 (1955)
    • Zariski, O.: Some open questions in the theory of singularities. Bull. Am. Math. Soc. 77, 481–491 (1971)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno