Ir al contenido

Documat


Local Bézout theorem for Henselian rings

  • Autores: María Emilia Alonso García Árbol académico, Henri Lombardi
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 419-432
  • Idioma: inglés
  • DOI: 10.1007/s13348-016-0184-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we prove what we call Local Bézout Theorem (Theorem 3.7). It is a formal abstract algebraic version, in the frame of Henselian rings and \mathfrak {m}-adic topology, of a well known theorem in the analytic complex case. This classical theorem says that, given an isolated point of multiplicity r as a zero of a local complete intersection, after deforming the coefficients of these equations we find in a sufficiently small neighborhood of this point exactly r isolated zeroes counted with multiplicities. Our main tools are, first the border bases [11], which turned out to be an efficient computational tool to deal with deformations of algebras. Second we use an important result of de Smit and Lenstra [7], for which there exists a constructive proof in [13]. Using these tools we find a very simple proof of our theorem, which seems new in the classical literature.

  • Referencias bibliográficas
    • Alonso, M. E., Brachat, J., Mourrain, B.: Stable Deformation of Zero-Dimensional Quotient Algebras, Technical report (2009)
    • Alonso, M.E., Coquand, T., Lombardi, H.: Revisiting Zariski main theorem from a constructive point of view. J. Algebra 406, 46–68 (2014)
    • Alonso, M.E., Lombardi, H.: Local Bézout theorem. J. Symb. Comput. 45(10), 975–985 (2010)
    • Arnold, V.I., Gusein-Zade, S.M., Varchenko, A.N.: Singularities of differentiable maps, Volume 1. Classification of critical points, caustics...
    • Bishop, Errett: Foundations of constructive analysis. McGraw-Hill Book Co, New York (1967)
    • Brachat, J.: Schémas de Hilbert et Décomposition de tenseurs. PhD thesis, (2011)
    • de Smit, B., Lenstra, H.W.: Finite complete intersection algebras and the completeness radical. J. Algebra 196(2), 520–531 (1997)
    • Eisermann, M.: The fundamental theorem of algebra made effective: an elementary real-algebraic proof via Sturm chains. Am. Math. Monthly 119(9),...
    • Griffiths, Phillip, Harris, Joseph: Principles of algebraic geometry. Wiley Classics Library. John Wiley & Sons, Inc., New York (1994)....
    • Lombardi, H., Quitté, C.: Commutative Algebra. Constructive Methods. Algebra and Applications, Vol. 20. Springer, Berlin (2015)
    • Mourrain, B.: A new criterion for normal form algorithms. In: Applied algebra, algebraic algorithms and error correcting codes. 13th international...
    • Ostrowski, A.M.: Solution of equations in Euclidean and Banach spaces. Academic Press [A Subsidiary of Harcourt Brace Jovanovich, Publishers],...
    • Quitté, C., and Lombardi, H.: Le théorème de de Smit et Lenstra, démonstration élémentaire. http://arxiv.org/abs/1508.05589 (2015)
    • Richman, F.: The fundamental theorem of algebra: a constructive development without choice. Pacific J. Math. 196(1), 213–230 (2000)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno