Ir al contenido

Documat


Local Bézout theorem for Henselian rings

  • Autores: María Emilia Alonso García Árbol académico, Henri Lombardi
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 419-432
  • Idioma: inglés
  • DOI: 10.1007/s13348-016-0184-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this paper we prove what we call Local Bézout Theorem (Theorem 3.7). It is a formal abstract algebraic version, in the frame of Henselian rings and ? -adic topology, of a well known theorem in the analytic complex case. This classical theorem says that, given an isolated point of multiplicity r as a zero of a local complete intersection, after deforming the coefficients of these equations we find in a sufficiently small neighborhood of this point exactly r isolated zeroes counted with multiplicities. Our main tools are, first the border bases [11], which turned out to be an efficient computational tool to deal with deformations of algebras. Second we use an important result of de Smit and Lenstra [7], for which there exists a constructive proof in [13]. Using these tools we find a very simple proof of our theorem, which seems new in the classical literature.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno