Ir al contenido

Documat


Perturbed Kirchhoff-type p-Laplacian discrete problems

  • Autores: Shapour Heidarkhani, Giuseppe Caristi, Amjad Salari
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 401-418
  • Idioma: inglés
  • DOI: 10.1007/s13348-016-0180-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • The present paper is an attempt to the study of multiplicity results of solutions for a class of perturbed p-Laplacian discrete problems of Kirchhoff-type. Indeed, we will use variational methods for smooth functionals, defined on the reflexive Banach spaces in order to achieve the existence of at least three solutions for the problems. Moreover, assuming sign conditions on the nonlinear terms, we will prove that the solutions are non-negative. Finally, by presenting two examples, we will ensure the applicability of our results.

  • Referencias bibliográficas
    • Alves, C.O., Corrêa, F.S.J.A., Ma, T.F.: Positive solutions for a quasilinear elliptic equations of Kirchhoff type. Comput. Math. Appl. 49,...
    • Atici, F.M., Cabada, A.: Existence and uniqueness results for discrete second-order periodic boundary value problems. Comput. Math. Appl....
    • Atici, F.M., Guseinov, G.Sh.: Positive periodic solutions for nonlinear difference equations with periodic coefficients. J. Math. Anal. Appl....
    • Autuori, G., Colasuonno, F., Pucci, P.: Blow up at infinity of solutions of polyharmonic Kirchhoff systems. Complex Var. Elliptic Equ. 57,...
    • Autuori, G., Colasuonno, F., Pucci, P.: Lifespan estimates for solutions of polyharmonic Kirchhoff systems. Math. Models Methods Appl. Sci....
    • Autuori, G., Colasuonno, F., Pucci, P.: On the existence of stationary solutions for higher-order p-Kirchhoff problems. Commun. Contemp. Math....
    • Bonanno, G., Candito, P.: Nonlinear difference equations investigated via critical point methods. Nonlinear Anal. TMA 70, 3180–3186 (2009)
    • Cabada, A., Iannizzotto, A., Tersian, S.: Multiple solutions for discrete boundary value problem. J. Math. Anal. Appl. 356, 418–428 (2009)
    • Candito, P., D’Aguì, G.: Three solutions for a discrete nonlinear Neumann problem involving the p-Laplacian. Adv. Differ. Equ. 2010. Art....
    • Candito, P., Giovannelli, N.: Multiple solutions for a discrete boundary value problem. Comput. Math. Appl. 56, 959–964 (2008)
    • Chakrone, O., Hssini, E.M., Rahmani, M., Darhouche, O.: Multiplicity results for a -Laplacian discrete problems of Kirchhoff type. Appl....
    • Chu, J., Jiang, D.: Eigenvalues and discrete boundary value problems for the one-dimensional p-Laplacian. J. Math. Anal. Appl. 305, 452–465...
    • Colasuonno, F., Pucci, P.: Multiplicity of solutions for p(x)-polyharmonic elliptic Kirchhoff equations. Nonlinear Anal. TMA 74, 5962–5974...
    • Heidarkhani, S., Afrouzi, G.A., Henderson, J., Moradi, S., Caristi, G.: Variational approaches to p-Laplacian discrete problems of Kirchhoff...
    • Heidarkhani, S., Afrouzi, G.A., O’Regan, D.: Existence of three solutions for a Kirchhoff-type boundary-value problem. Electron. J. Differ....
    • Heidarkhani, S., Khaleghi Moghadam, M.: Existence of three solutions for perturbed nonlinear difference equations. Opusc. Math. 34, 747–761...
    • Heidarkhani, S., Salari, A.: Existence of three solutions for difference equations through variational methods (preprint)
    • Heidarkhani, S., Salari, A.: Existence of three solutions for impulsive perturbed elastic beam fourth-order equations of Kirchhoff-type. Stud....
    • Henderson, J., Thompson, H.B.: Existence of multiple solutions for second order discrete boundary value problems. Comput. Math. Appl. 43,...
    • Jiang, L., Zhou, Z.: Three solutions to Dirichlet boundary value problems for p-Laplacian difference equations. Adv. Differ. Equ. 2008, 1–10...
    • Kelly, W.G., Peterson, A.C.: Difference Equations: An Introduction with Applications. Academic Press, San Diego (1991)
    • Khaleghi Moghadam, M., Heidarkhani, S.: Existence of a non-trivial solution for nonlinear difference equations. Differ. Equ. Appl. 6, 517–525...
    • Khaleghi Moghadam, M., Heidarkhani, S., Henderson, J.: Infinitely many solutions for perturbed difference equations. J. Differ. Equ. Appl....
    • Kirchhoff, G.: Vorlesungen uber mathematische Physik: Mechanik. Teubner, Leipzig (1883)
    • Kone, B., Nyanquini, I., Ouaro, S.: Weak solutions to discrete nonlinear two-point boundary-value problems of Kirchhoff type. Electron. J....
    • Lions, J.L.: On some questions in boundary value problems of mathematical physics. In: Contemporary Developments in Continuum Mechanics and...
    • Molica Bisci, G., Pizzimenti, P.: Sequences of weak solutions for non-local elliptic problems with Dirichlet boundary condition. Proc. Edinb....
    • Molica Bisci, G., Rădulescu, V.: Applications of local linking to nonlocal Neumann problems. Commun. Contemp. Math. 17, 1450001 (2015)
    • Molica Bisci, G., Rădulescu, V.: Mountain pass solutions for nonlocal equations. Annales AcademiæScientiarum FennicæMathematica 39, 579–592...
    • Mihăilescu, M., Rădulescu, V., Tersian, S.: Eigenvalue problems for anisotropic discrete boundary value problems. J. Differ. Equ. Appl. 15,...
    • Molica Bisci, G., Repovš, D.: Nonlinear algebraic systems with discontinuous terms. J. Math. Anal. Appl. 398, 846–856 (2013)
    • Molica Bisci, G., Repovš, D.: On sequences of solutions for discrete anisotropic equations. Expo. Math. 32, 284–295 (2014)
    • Molica Bisci, G., Repovš, D.: On some variational algebraic problems. Adv. Nonlinear Anal. 2, 127–146 (2013)
    • Ricceri, B.: A further three critical points theorem. Nonlinear Anal. TMA 71, 4151–4157 (2009)
    • Ricceri, B.: A three critical points theorem revisited. Nonlinear Anal. TMA 70, 3084–3089 (2009)
    • Ricceri, B.: Existence of three solutions for a class of elliptic eigenvalue problem. Math. Comput. Model. 32, 1485–1494 (2000)
    • Ricceri, B.: On an elliptic Kirchhoff-type problem depending on two parameters. J. Glob. Optim. 46, 543–549 (2010)
    • Shahruz, S.M., Parasurama, S.A.: Suppression of vibration in the axially moving Kirchhoff string by boundary control. J. Sound Vib. 214, 567–575...
    • Sun, J., Chen, H., Nieto, J.J., Otero-Novoa, M.: The multiplicity of solutions for perturbed second-order Hamiltonian systems with impulsive...
    • Wang, D.B., Guan, W.: Three positive solutions of boundary value problems for p-Laplacian difference equations. Comput. Math. Appl. 55, 1943–1949...
    • Yang, J., Liu, J.: Nontrivial solutions for discrete Kirchhoff-type problems with resonance via critical groups. Adv. Differ. Equ. 2013(1),...
    • Yucedag, Z.: Existence of solutions for anisotropic discrete boundary value problem of Kirchhoff type. Int. J. Differ. Equ. Appl. 13(1), 1–15...
    • Zhang, J.: The critical Neumann problem of Kirchhoff type. Appl. Math. Comput. 274, 519–530 (2016)
    • Zhang, J., Tang, X., Zhang, W.: Existence of multiple solutions of Kirchhoff type equation with sign-changing potential. Appl. Math. Comput....

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno