Ir al contenido

Documat


Minimal generating sets of lattice ideals

  • Autores: Hara Charalambous, Apostolos Thoma, Marius Vladoiu
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 377-400
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0191-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let L\subset \mathbb {Z}^n be a lattice and I_L=\langle x^{\mathbf {u}}-x^{\mathbf {v}}:\ {\mathbf {u}}-{\mathbf {v}}\in L\rangle be the corresponding lattice ideal in \Bbbk [x_1,\ldots , x_n], where \Bbbk is a field. In this paper we describe minimal binomial generating sets of I_L and their invariants. We use as a main tool a graph construction on equivalence classes of fibers of I_L. As one application of the theory developed we characterize binomial complete intersection lattice ideals, a longstanding open problem in the case of non-positive lattices.

  • Referencias bibliográficas
    • Aoki, S., Takemura, A., Yoshida, R.: Indispensable monomials of toric ideals and Markov bases. J. Symb. Comput. 43, 490–507 (2008)
    • Bigatti, A., LaScala, R., Robbiano, L.: Computing toric ideals. J. Symb. Comput. 27, 351–365 (1999)
    • Briales, E., Campillo, A., Marijuán, C., Pisón, P.: Minimal systems of generators for ideals of semigroups. J. Pure Appl. Algebra 124, 7–30...
    • Charalambous, H., Katsabekis, A., Thoma, A.: Minimal systems of binomial generators and the indispensable complex of a toric ideal. Proc....
    • Charalambous, H., Thoma, A., Vladoiu, M.: Markov bases and generalized Lawrence liftings. Ann. Comb. 19, 661–669 (2015)
    • Charalambous, H., Thoma, A., Vladoiu, M.: Markov complexity of monomial curves. J. Algebra 417, 391–411 (2014)
    • Charalambous, H., Thoma, A., Vladoiu, M.: Binomial fibers and indispensable binomials. J. Symb. Comput. 74, 578–591 (2016)
    • CoCoATeam: CoCoA: a system for doing computations in commutative algebra. http://cocoa.dima.unige.it
    • Delorme, Ch.: Sous monoides d’intersection complete de N. Ann. Sci. Éc. Norm. Super. 9, 145–154 (1976)
    • Diaconis, P., Sturmfels, B.: Algebraic algorithms for sampling from conditional distributions. Ann. Stat. 26, 363–397 (1998)
    • Dickenstein, A., Matusevich, L.F., Miller, E.: Combinatorics of binomial primary decomposition. Math. Z. 264, 745–763 (2010)
    • Drton, M., Sturmfels, B., Sullivant, S.: Lectures on algebraic statistics, Oberwolfach Seminars, vol. 39. Birkhäuser Verlag, Basel (2009)
    • Eisenbud, D., Sturmfels, B.: Binomial ideals. Duke Math. J. 84, 1–45 (1996)
    • Fischer, K., Morris, W., Shapiro, J.: Affine semigroup rings that are complete intersections. Proc. Am. Math. Soc. 125, 3137–3145 (1995)
    • Gitler, I., Reyes, E., Vega, J.A.: Complete intersection toric ideals of oriented graphs and Chorded-Theta subgraphs. J. Algebr. Comb. 38,...
    • Herzog, J.: Generators and relations of abelian semigroups and semigroup rings. Manuscr. Math. 3, 175–193 (1970)
    • Hemmecke, R., Malkin, P.: Computing generating sets of lattice ideals and Markov bases of lattices. J. Symb. Comput. 44, 1463–1476 (2009)
    • Hoşten, S., Sturmfels, B.: GRIN: an implementation of Gröbner bases for integer programming. In: Balas, E., Clausen, J. (eds.) Integer programming...
    • Hoşten, S., Sullivant, S.: A finiteness theorem for Markov bases of hierarchical models. J. Comb. Theory Ser. A 114, 311–321 (2007)
    • Ishida, M.N.: Normal semigroup rings which are complete intersections. In: Proceedings of Symposium on Commtative Algebra, Karuizawa (1978)
    • Kähle, T., Miller, E.: Decompositions of commutative monoid congruences and binomial ideals. Algebra Number Theory 8, 1297–1364 (2014)
    • López, H., Villarreal, R.: Complete intersections in binomial and lattice ideals. Int. J. Algebra Comput. 23, 1419–1429 (2013)
    • Miller, E.: Theory and Applications of lattice point methods for binomial ideals. In: Combinatorial Aspects of Commutative Algebra and Algebraic...
    • Miller, E., Sturmfels, B.: Combinatorial commutative algebra. Graduate Texts in Mathematics, vol. 227, xiv+417 pp. Springer, New York...
    • Morales, M., Thoma, A.: Complete intersection lattice ideals. J. Algebra 284, 755–770 (2005)
    • Nakajima, H.: Affine torus embeddings which are complete intersections. Tôhoku Math. J. 38, 85–98 (1986)
    • O’Carroll, L., Planas-Vilanova, F., Villarreal, R.: Degree and algebraic properties of lattice and matrix ideals. SIAM J. Discrete Math. 28(1),...
    • Ohsugi, H., Hibi, T.: Indispensable binomials of finite graphs. J. Algebra Appl. 4, 421–434 (2005)
    • Ohsugi, H., Hibi, T.: Toric ideals arising from contingency tables. In: Proceedings of the Ramanujan Mathematical Society’s Lecture Notes...
    • Ojeda, I., Vigneron-Tenorio, A.: Indispensable binomials in semigroup ideals. Proc. Am. Math. Soc. 138, 4205–4216 (2010)
    • Peeva, I., Sturmfels, B.: Generic lattice ideals. J. Am. Math. Soc. 11, 363–373 (1998)
    • Rosales, J.C., Garcia-Sanchez, P.A.: On complete intersection affine semigroups. Commun. Algebra 23, 5395–5412 (1995)
    • Santos, F., Sturmfels, B.: Higher Lawrence configurations. J. Comb. Theory Ser. A 103, 151–164 (2003)
    • Schäfer, U.: Der kanonische modul monomialer raumkurven. Diplomarbeit, Martin-Luther-Universität Halle/Wittenberg, Halle (1985)
    • Scheja, G., Scheja, O., Storch, U.: On regular sequences of binomials. Manuscr. Math. 98, 115–132 (1999)
    • Stanley, R.P.: Relative invariants of finite groups generated by pseudoreflections. J. Algebra 49, 134–148 (1977)
    • Sturmfels, B.: Gröbner Bases and Convex Polytopes. University Lecture Series, No. 8 American Mathematical Society Providence, R.I. (1995)
    • Sturmfels, B., Weismantel, R., Ziegler, G.: Gröbner bases of lattices, corner polyhedra, and integer programming. Beitr. Algebra Geom. Contrib....
    • Watanabe, K.: Invariant subrings which are complete intersections, I ( Invariant subrings of finite abelian groups). Nagoya Math. 77, 89–98...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno