Ir al contenido

Documat


Minimal generating sets of lattice ideals

  • Autores: Hara Charalambous, Apostolos Thoma, Marius Vladoiu
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 377-400
  • Idioma: inglés
  • DOI: 10.1007/s13348-017-0191-9
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let L\subset \mathbb {Z}^n be a lattice and I_L=\langle x^{\mathbf {u}}-x^{\mathbf {v}}:\ {\mathbf {u}}-{\mathbf {v}}\in L\rangle be the corresponding lattice ideal in \Bbbk [x_1,\ldots , x_n], where \Bbbk is a field. In this paper we describe minimal binomial generating sets of I_L and their invariants. We use as a main tool a graph construction on equivalence classes of fibers of I_L. As one application of the theory developed we characterize binomial complete intersection lattice ideals, a longstanding open problem in the case of non-positive lattices.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno