Ir al contenido

Documat


Boundary oscillations of harmonic functions in Lipschitz domains

  • Autores: P. Mozolyako
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 359-376
  • Idioma: inglés
  • DOI: 10.1007/s13348-016-0177-z
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let u(x, y) be a harmonic function in the halfspace {\mathbb {R}}^n\times {\mathbb {R}}_+ that grows near the boundary not faster than some fixed majorant w(y). Recently it was proven that an appropriate weighted average along the vertical lines of such a function satisfies the law of iterated logarithm (LIL). We extend this result to a class of Lipschitz domains in {\mathbb {R}}^{n+1}. In particular, we obtain the local version of this LIL for the upper halfspace. The proof is based on approximation of the weighted averages by a Bloch function, satisfying some additional condition determined by the weight w. The growth rate of such Bloch function depends on w and, for slowly increasing w, turns out to be slower than the one provided by LILs of Makarov and Llorente. We discuss the necessary condition for an arbitrary Bloch function to exhibit this type of behaviour.

  • Referencias bibliográficas
    • Bañuelos, R., Moore, C.N.: Probabilistic Behavior of Harmonic Functions. Birkhäuser, Basel (1999)
    • Borichev, A., Lyubarskii, Yu., Malinnikova, E., Thomas, P.: Radial growth of functions in the Korenblum space. St. Petersb. Math. J. 21, 877–891...
    • Eikrem, K.S., Malinnikova, E.: Coefficient multipliers of growth spaces of harmonic functions. Integr. Equ. Oper. Theory 82, 555–573 (2015)
    • Eikrem, K.S., Malinnikova, E., Mozolyako, P.: Wavelet characterization of growth spaces of harmonic functions. J. d’Analyze Math. 122, 87–111...
    • Garnett, J.B., Marshall, D.E.: Harmonic Measure. Cambridge University Press, Cambridge (2005)
    • Llorente, J.G.: Boundary values of harmonic Bloch functions in Lipschitz domains: a martingale approach. Potential Anal. 9, 229–260 (1998)
    • Llorente, J.G.: Discrete Martingales and Application to Analysis. University of Jyväskylä, Jyväskylä (2002)
    • Llorente, J.G., Nicolau, A.: Oscillation of Hölder continuous functions. Real Anal. Exch. 39(2), pp. 305–322 (2014)
    • Lyubarskii, Yu., Malinnikova, E.: Radial oscillation of harmonic functions in the Korenblum class. Bull. Lond. Math. Soc. 44(1), 68–84 (2012)
    • Makarov, N.G.: Probability methods in the theory of conformal mappings. Algebra i Analiz. 1, 3–59 (1989)
    • Meyer, Y.: Wavelets and Operators, p. 225. Cambridge University Press, Cambridge (1992)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno