Ir al contenido

Documat


The Halphen cubics of order two

  • Autores: Thomas Bauer, Brian Harbourne, Joaquim Roé Vellvé Árbol académico, Tomasz Szemberg
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 339-357
  • Idioma: inglés
  • DOI: 10.1007/s13348-016-0172-4
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • For each m\geqslant 1, Roulleau and Urzúa give an implicit construction of a configuration of 4(3m^2-1) complex plane cubic curves. This construction was crucial for their work on surfaces of general type. We make this construction explicit by proving that the Roulleau–Urzúa configuration consists precisely of the Halphen cubics of order m, and we determine specific equations of the cubics for m=1 (which were known) and for m=2 (which are new).

  • Referencias bibliográficas
    • Artebani, M., Dolgachev, I.: The Hesse pencil of plane cubic curves. L’Enseignement Mathématique. Revue Internationale. 2e Série 55, 235–273...
    • Aure, A., Decker, W., Popescu, S., Hulek, K., Ranestad, K.: The geometry of bielliptic surfaces in {\mathbb{P}}^4. Int. J. Math. 4, 873–902...
    • Bauer, T., Schulz, C.: Seshadri constants on the self-product of an elliptic curve. J. Algebra. 320, 2981–3005 (2008)
    • Bauer, T., Szemberg, T.: On tensor products of ample line bundles on abelian varieties. Math. Z. 223, 79–85 (1996)
    • Birkenhake, C., Lange, H.: Complex abelian varieties. Springer, Berlin (2004)
    • Catanese, F., Ciliberto, C.: On the irregularity of cyclic coverings of algebraic surfaces. Geometry of complex projective varieties (Cetraro,...
    • Cohen, H.: Advanced topics in computational number theory. Graduate texts in mathematics, 193. Springer, New York (2000). ISBN: 0-387-98727-4
    • Comessatti, A.: Sui piani tripli ciclici irregolari. Rend. Circ. Mat. Palermo 21, 369–386 (1911)
    • Dolgachev, I.V.: Classical algebraic geometry. A modern view. Cambridge University Press, Cambridge (2012)
    • Frium, H.: The group law on elliptic curves on Hesse form. Finite fields with applications to coding theory. Cryptography and related areas...
    • Halphen, G.: Recherches sur les courbes planes du troisieme degré. Math. Ann. 15, 359–379 (1879)
    • Hayashida, T., Nishi, M.: Existence of curves of genus two on a product of two elliptic curves. J. Math. Soc. Jpn 17(1), 1–16 (1965)
    • Hirzebruch, F.: Chern numbers of algebraic surfaces: an example. Math. Ann. 266(3), 351–356 (1984)
    • Lang, S.: Elliptic curves: diophantine analysis. Springer, Berlin (1978)
    • Roulleau, X.: Bounded negativity. Miyaoka-Sakai inequality and elliptic curve configurations. Preprint (2014). arXiv:1411.6996
    • Roulleau, X., Urzúa, G.: Chern slopes of simply connected complex surfaces of general type. Ann. Math. 182, 287–306 (2015)
    • Silverman, J.H.: The arithmetic of elliptic curves graduate texts in mathematics, 106. Springer, New York (1986). ISBN: 0-387-96203-4

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno