Ir al contenido

Documat


\ell ^2(G)-linear independence for systems generated by dual integrable representations of LCA groups

  • Autores: Ivana Slamić
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 3, 2017, págs. 323-337
  • Idioma: inglés
  • DOI: 10.1007/s13348-016-0175-1
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • Let T be a dual integrable representation of a countable discrete LCA group G acting on a Hilbert space \mathbb H. We consider the problem of characterizing \ell ^2(G)-linear independence of the system \mathcal B_{\psi }=\{T_{g}\psi :g\in G\} for a given function \psi \in \mathbb H in terms of the bracket function. The characterization theorem is obtained for the case when G is a uniform lattice of the p-adic Vilenkin group acting by translations and a partial answer is given for the case when \mathcal B_{\psi } is the Gabor system.

  • Referencias bibliográficas
    • Benedetto, J.J., Benedetto, R.L.: Wavelets and multiscale analysis: theory and applications. In: Cohen, Jonathan, Zayed, Ahmed I. (eds.) The...
    • Barbieri, D., Hernández, E., Mayeli, A.: Bracket map for the Heisenberg group and the characterization of cyclic subspaces. Appl. Comput....
    • Barbieri, D., Hernández, E., Parcet, J.: Riesz and frame systems generated by unitary actions of discrete groups. Appl. Comput. Harmon. Anal....
    • Barbieri, D., Hernández, E., Paternostro, V.: The Zak transform and the structure of spaces invariant by the action of an LCA group. J. Funct....
    • Billard, P.: Sur la convergence presque partout des séries de Fourier–Walsh des fonctions de l’espace L^2(0, 1). Stud. Math. 28, 363–388 (1967)
    • Bogachev, V.I.: Measure Theory, vol. I. Springer, Berlin (2007)
    • Bownik, M., Ross, K.A.: The structure of translation-invariant spaces on locally compact abelian groups. J. Fourier Anal. Appl. 21(4), 849–884...
    • Cabrelli, C., Paternostro, V.: Shift invariant spaces on LCA groups. J. Funct. Anal. 258(6), 2034–2059 (2010)
    • Farkov, Y.A.: Orthogonal wavelets on locally compact abelian groups. Funkts. Anal. Prilozh. 31(4), 84–88 (1997)
    • Folland, G.B.: A Course in Abstract Harmonic Analysis. Studies in Advanced Mathematics. CRC Press, Boca Raton, FL (1995)
    • Fefferman, C.: On the convergence of multiple Fourier series. Bull. Am. Math. Soc. 77, 744–745 (1971)
    • Gosselin, J.: Almost everywhere convergence of Vilenkin–Fourier series. Trans. Am. Math. Soc. 185, 345–370 (1974)
    • Heil, C.E.: A basis theory primer, Expanded edn. Birkhäuser, Boston (2011)
    • Hernández, E., Šikić, H., Weiss, G., Wilson, E.N.: Cyclic subspaces for unitary representations of LCA groups; generalized Zak transform....
    • Hernández, E., Šikić, H., Weiss, G., Wilson, E.N.: On the properties on the integer translates of a square integrable function. Contemp. Math....
    • Hernández, E., Šikić, H., Weiss, G., Wilson, E.N.: Wavelets and multiscale analysis: theory and applications. In: Cohen, J., Zayed, A.I. (eds.)...
    • Ivanishvili, P., Kislyakov, S.V.: Correction up to a function with sparse spectrum and uniformly convergent Fourier series. J. Math. Sci....
    • Iverson, J.W.: Subspaces of L^2(G) invariant under translation by an abelian subgroup. J. Funct. Anal. 269(3), 865–913 (2015)
    • Jessen, B., Marcinkiewicz, J., Zygmund, A.: Note on the differentiability of multiple integrals. Fund. Math. 25, 217–234 (1935)
    • Gol Kamyabi, R.A., Raisi Tousi, R.: The structure of shift invariant spaces on a locally compact abelian group. J. Math. Anal. Appl. 340,...
    • Kamyabi Gol, R.A., Raisi Tousi, R.: A range function approach to shift-invariant spaces on locally compact abelian groups. Int. J. Wavelets...
    • Kendall, W.S., Montana, G.: Small sets and Markov transition densities. Stoch. Process. Appl. 99(2), 177–194 (2002)
    • Kislyakov, S.V.: Martingale transforms and uniformly convergent orthogonal series. J. Sov. Math. 37, 1276–1287 (1987)
    • Kisiyakov, S.V.: The quantitative aspect of correction theorems. Zap. Nauchn. Sem. Leningr. Otd. Mat. Inst. 92, 82–91 (1979)
    • Kislyakov, S.V.: Sharp correction theorem. Stud. Math. 113(2), 177–196 (1995)
    • Kislyakov, S.V.: On uniformly convergent double Fourier series. Zap. Nauchn. Sem. LOMI 178, 151–162 (1989)
    • Lang, W.C.: Orthogonal wavelets on the Cantor dyadic group. SIAM J. Math. Anal. 27, 305–312 (1996)
    • Marcinkiewicz, J., Zygmund, A.: On the summability of double Fourier series. Fund. Math. 32, 122–132 (1939)
    • Morgenthaler, G.W.: On Walsh–Fourier series. Trans. Am. Math. Soc. 84, 472–507 (1957)
    • Paluszyński, M.: A note on integer translates of a square integrable function on \mathbb{R}. Colloq. Math. 118(2), 593–597 (2010)
    • Saliani, S.: \ell ^2-Linear independence for the system of integer translates. Proc. Am. Math. Soc. 141(3), 937–941 (2013)
    • Saliani, S.: On various levels of linear independence for integer translates of a finite number of functions. In: Balan, R. (ed.) Applied...
    • Schipp, F.: Pointwise convergence of expansions with respect to certain product systems. Anal. Math. 2(1), 65–76 (1976)
    • Šikić, H., Slamić, I.: Linear independence and sets of uniqueness. Glas. Mat. III. Ser. 47(2), 415–420 (2012)
    • Šikić, H., Speegle, D.: Dyadic PFW’s and W0-bases, Functional Analysis IX, Various Publ. Ser. (Aarhus), 48, Univ. Aarhus, Aarhus, pp. 85–90...
    • Sjölin, P.: On the convergence almost everywhere of certain singular integrals and multiple Fourier series. Ark. Mat. 9, 65–90 (1971)
    • Slamić, I.: \ell ^p-Linear independence of the system of integer translates. J. Fourier Anal. Appl. 20(4), 766–783 (2014)
    • Tevzadze, N.R.: On the convergence of double Fourier series of quadratic summable functions. Soobšč. Akad. Nauk. Gruzin. SSR. 5, 277–279 (1970)
    • Vinogradov, S.A.: A strengthened form of Kolmogorov’s theorem on the conjugate function and interpolation properties of uniformly convergent...

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno