Ir al contenido

Documat


Tests for injectivity of modules over commutative rings

  • Autores: Lars Winther Christensen, Srikanth B. Iyengar
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 68, Fasc. 2, 2017, págs. 243-250
  • Idioma: inglés
  • DOI: 10.1007/s13348-016-0176-0
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • It is proved that a module M over a commutative noetherian ring R is injective if \mathrm {Ext}_{R}^{i}((R/{\mathfrak p})_{\mathfrak p},M)=0 holds for every i\geqslant 1 and every prime ideal \mathfrak {p} in R. This leads to the following characterization of injective modules: If F is faithfully flat, then a module M such that {\text {Hom}}_R(F,M) is injective and {\text {Ext}}^i_R(F,M)=0 for all i\geqslant 1 is injective. A limited version of this characterization is also proved for certain non-noetherian rings.

  • Referencias bibliográficas
    • Avramov, L.L., Foxby, H.-B.: Homological dimensions of unbounded complexes. J. Pure Appl. Algebra 71(2–3), 129–155 (1991)
    • Bass, H.: Finitistic dimension and a homological generalization of semi-primary rings. Trans. Am. Math. Soc. 95, 466–488 (1960)
    • Benson, D., Iyengar, S.B., Krause, H.: Local cohomology and support for triangulated categories. Ann. Sci. Éc. Norm. Supér 41(4), 573–619...
    • Benson, D.J., Iyengar, S.B., Krause, H.: Colocalizing subcategories and cosupport. J. Reine Angew. Math. 673, 161–207 (2012)
    • Benson, D.J., Iyengar, S.B., Krause, H., Pevtsova, J.: Stratification and \pi-cosupport: finite groups. arxiv:1505.06628 [math.RT] (preprint)
    • Christensen, L.W., Frankild, A., Holm, H.: On Gorenstein projective, injective and flat dimensions—a functorial description with applications....
    • Christensen, L.W., Köksal, F.: Injective modules under faithfully flat ring extensions. Proc. Am. Math. Soc. 144(3), 1015–1020 (2016)
    • Christensen, L.W., Iyengar, S.B., Marley, T.: Rigidity of Ext and Tor with coefficients in residue fields of a commutative noetherian ring...
    • Gruson, L., Jensen, C.U.: Dimensions cohomologiques reliées aux foncteurs {\mathop {\lim }\limits _{\longleftarrow }}^{{\rm (i)}}. In: Dubreil,...
    • Jensen, C.U.: On homological dimensions of rings with countably generated ideals. Math. Scand. 18, 97–105 (1966)
    • Neeman, A.: The chromatic tower for D(R). Topology 31(3), 519–532 (1992) (with an appendix by Marcel Bökstedt)
    • Osofsky, B.L.: Upper bounds on homological dimensions. Nagoya Math. J. 32, 315–322 (1968)
    • Osofsky, B.L.: Homological dimension and cardinality. Trans. Am. Math. Soc. 151, 641–649 (1970)

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno