We characterize the validity of the weighted inequality \begin{aligned} \left( \int _0^\infty \Big [ \sup _{s\in [t,\infty )} u(s) \int _s^\infty g(x)\,\mathrm {d}x\Big ]^q w(t)\,\mathrm {d}t\right) ^\frac{1}{q} \le C \left( \int _0^\infty g^p(t) v(t)\,\mathrm {d}t\right) ^\frac{1}{p} \end{aligned} for all nonnegative functions g on (0,\infty ), with exponents in the range 1\le p<\infty and 0 Moreover, we give an integral characterization of the inequality \begin{aligned} \left( \int _0^\infty \Big [ \sup _{s\in [t,\infty )} u(s) f(s) \Big ]^q w(t)\,\mathrm {d}t\right) ^\frac{1}{q} \le C \left( \int _0^\infty f^p(t) v(t)\,\mathrm {d}t\right) ^\frac{1}{p} \end{aligned} being satisfied for all nonnegative nonincreasing functions f on (0,\infty ) in the case 0
© 2008-2025 Fundación Dialnet · Todos los derechos reservados