Andrea Causin, Margarida Mendes Lopes , Gian Pietro Pirola
We prove a new inequality for the Hodge number h^{1,1} of irregular complex smooth projective surfaces of general type without irrational pencils of genus \ge2. More specifically we show that if the irregularity q satisfies q=2^k+1 then h^{1,1}\ge 4q-3. This generalizes results previously known for q=3 and q=5.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados