Ir al contenido

Documat


Convergence of the Eckmann and Ruelle algorithm for the estimation of Liapunov exponents

  • Autores: M. Eugenia Mera Rivas, Manuel Moran Cabre Árbol académico
  • Localización: Ergodic theory and dynamical systems, ISSN 0143-3857, Vol. 20, Nº 2, 2000, págs. 531-546
  • Idioma: inglés
  • DOI: 10.1017/s0143385700000262
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • We analyse the convergence conditions of the Eckmann and Ruelle algorithm (ERA) used to estimate the Liapunov exponents, for the tangent map, of an ergodic measure, invariant under a smooth dynamical system. We find sufficient conditions for this convergence that are related to those ensuring the convergence to the tangent map of the best linear $L^p$-fittings of the action of a mapping $f$ on small balls. Under such conditions, we show how to use ERA to obtain estimates of the Liapunov exponents, up to an arbitrary degree of accuracy. We propose an adaptation of ERA for the computation of Liapunov exponents in smooth manifolds, which allows us to avoid the problem of detecting the spurious exponents.

      We prove, for a Borel measurable dynamics $f$, the existence of Liapunov exponents for the function $S_r(x)$, mapping each point $x$ to the matrix of the best linear $L^p$-fitting of the action of $f$ on the closed ball of radius $r$ centred at $x$, and we show how to use ERA to get reliable estimates of the Liapunov exponents of $S_r$. We also propose a test for checking the differentiability of an empirically observed dynamics.

  • Referencias bibliográficas
    • H. Abarbanel, R. Brown and M. B. Kennel. Liapunov exponents in chaotic systems: their importance and their evaluation using observed data.Int....
    • R. Brown, P. Bryant and H. Abarbanel. Computing the Lyapunov spectrum of a dynamical system from an observed time series.Phys. Rev.A 43(6)...
    • L. Barreira, Y. Pesin and J. Schmeling. On the pointwise dimension of hyperbolic measures: a proof of the Eckmann–Ruelle conjecture.Electronic...
    • P. Billingsley.Convergence of Probability Measures.Wiley, 1968.
    • J. P. R. Christensen.Topology and Borel Structure.North-Holland/American Elsevier, 1974.
    • J. P. Eckmann and D. Ruelle. Ergodic theory of chaos and strange attractors.Rev. Mod. Phys.57 (1985), 617–656.
    • J. P. Eckmann, S. O. Kamphorst, D. Ruelle and S. Ciliberto. Liapunov exponents from time series.Phys. Rev.A 34(6) (1986), 4971–4979.
    • P. Grassberger. An optimized box-assisted algorithm for fractal dimensions.Phys. Lett. A 148 (1990), 63–68.
    • P. Henrici.Applied and Computational Complex Analysis.Vol. 1. Wiley, New York, 1974.
    • P. Mattila.Geometry of Sets and Measures in Euclidean Spaces. Fractals and Rectifiability. Cambridge University Press, 1995.
    • M. E. Mera and M. Morán. Lp(µ)-estimation of tangent maps. J. Math. Analysis Appl.235(1999), 454–469. https://doi.org/10.1017/S0143385700000262
    • M. E. Mera and M. Morán. Smoothness, degrees of freedom and Liapunov exponents of a time series. Preprint.
    • V. I. Oseledec. A multiplicative ergodic theorem. Liapunov characteristic exponents.Trans. Moscow Math. Soc.19 (1968), 179–231.
    • R. T. Rockafellar.Convex Analysis.Princeton University Press, 1972.
    • D. Ruelle. Ergodic theory of differentiable dynamical systems.Publ. Math. IHES.50 (1979), 275–307.
    • M. Sano and Y. Sawada. Measurement of the Liapunov spectrum from a chaotic time series.Phys. Rev. Lett.55(10) (1985), 1082–1085.
    • S. Sato, M. Sano and Y. Sawada. Practical methods of measuring the generalized dimension and the largest Liapunov exponent in high dimensional...
    • F. Takens. Detecting strange attractors in turbulence.Dynamical Systems and Turbulence (Lectures Notes in Mathematics, 898). Springer, 1981,...
    • C. Tricot. Two definitions of fractional dimension.Math. Proc. Camb. Phil. Soc.91 (1982), 57–74.
    • P. Walters.An Introduction to Ergodic Theory. Springer, 1982.
    • A. Wolf, J. B. Swift, H. L. Swinney and A. Vastano. Determining Liapunov exponents from time series. PhysicaD 16 (1984), 285–317. https://doi.org/10.1017/S0143385700000262

Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno