Ir al contenido

Documat


A version of Kalton’s theorem for the space of regular operators

  • Autores: Foivos Xanthos
  • Localización: Collectanea mathematica, ISSN 0010-0757, Vol. 66, Fasc. 1, 2015, págs. 55-62
  • Idioma: inglés
  • DOI: 10.1007/s13348-013-0101-8
  • Texto completo no disponible (Saber más ...)
  • Resumen
    • In this note we extend some recent results in the space of regular operators [appeared in Bu and Wong (Indag Math 23:199–213, 2012), Bu et al. (Collect Math 62:131–137, 2011), and Li et al. (Taiwan J Math 16:207–215, 2012)]. Our main result is the following Banach lattice version of a classical result of Kalton: Let E be an atomic Banach lattice with an order continuous norm and F a Banach lattice. Then the following are equivalent: (i) L^r(E,F) contains no copy of \ell _\infty, (ii) L^r(E,F) contains no copy of c_0, (iii) K^r(E,F) contains no copy of c_0, (iv) K^r(E,F) is a (projection) band in L^r(E,F), (v) K^r(E,F)=L^r(E,F)


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno