Manuela Basallote Galván, Manuel Domingo Contreras Márquez , Carmen Hernández Mancera
, María J. Martín, Pedro J. Paúl
We characterize the boundedness, compactness and weak compactness of Volterra operators V_{g}(f)(z) := \int _{0}^{z}f({\zeta })g^{\prime }({\zeta })\,d{\zeta } acting between different weighted spaces of type H^{\infty }_{v} in terms of the symbol function g, for the case when v is a quasi-normal weight, a notion weaker than normality. Then we apply the characterization of compactness to analyze the behavior of semigroups of composition operators on H^{\infty }_{v}.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados