We define a natural singular hermitian metric {\|\cdot\|_{s}} (s > 0) on the boundary divisor {{\delta=\mathcal{O}(\partial\mathcal{M}_{1,1})}} of the moduli stack of 1-pointed stable curves of genus 1, {{\overline{\mathcal{M}}_{1,1}}} . For s > 3/2 we prove that {\|\cdot\|_{s}} is a log-singular hermitian metric in the sense of Burgos–Kramer–Kühn, with singularities along {{\partial\mathcal{M}_{1,1}}} . We compute the arithmetic intersection number of {(\delta,\|\cdot\|_{s})} with the first tautological hermitian line bundle {\overline{\kappa}_{1,1}} on {{\overline{\mathcal{M}}_{1,1}.}} The result involves the special values {{\zeta^{\prime}(-1), \zeta^{\prime}(-2)}} and {{\zeta(2, s)}}, where {\zeta(s)} is Riemann’s zeta function and {\zeta(\sigma,s)} is Hurwitz’ zeta function.
© 2008-2025 Fundación Dialnet · Todos los derechos reservados