Ir al contenido

Documat


A Hardy–Littlewood maximal operator adapted to the harmonic oscillator

  • Julian Bailey [1]
    1. [1] Australian National University

      Australian National University

      Australia

  • Localización: Revista de la Unión Matemática Argentina, ISSN 0041-6932, ISSN-e 1669-9637, Vol. 59, Nº. 2, 2018, págs. 339-373
  • Idioma: inglés
  • DOI: 10.33044/revuma.v59n2a07
  • Enlaces
  • Resumen
    • This paper constructs a Hardy–Littlewood type maximal operator adapted to the Schr¨odinger operator L := −∆ + |x| 2 acting on L2 (Rd). It achieves this through the use of the Gaussian grid ∆γ0, constructed by Maas, van Neerven, and Portal [Ark. Mat. 50 (2012), no. 2, 379–395] with the Ornstein-Uhlenbeck operator in mind. At the scale of this grid, this maximal operator will resemble the classical Hardy–Littlewood operator. At a larger scale, the cubes of the maximal function are decomposed into cubes from ∆γ0 nd weighted appropriately. Through this maximal function, a new class of weights is defined, A+p , with the property that for any w ∈ A+p the heat maximal operator associated with L is bounded from Lp(w) to itself. This class contains any other known class that possesses this property. In particular, it is strictly larger than Ap.


Fundación Dialnet

Mi Documat

Opciones de artículo

Opciones de compartir

Opciones de entorno